
Automatically Inferring Quantified Loop Invariants
by Algorithmic Learning from Simple

Templates?

Soonho Kong1, Yungbum Jung1, Cristina David2, Bow-Yaw Wang3, and Kwangkeun Yi1

1 Seoul National University
2 National University of Singapore

3 INRIA, Tsinghua University, and Academia Sinica

Abstract. By combining algorithmic learning, decision procedures, pred-
icate abstraction, and simple templates, we present an automated tech-
nique for finding quantified loop invariants. Our technique can find ar-
bitrary first-order invariants (modulo a fixed set of atomic propositions
and an underlying SMT solver) in the form of the given template and
exploits the flexibility in invariants by a simple randomized mechanism.
The proposed technique is able to find quantified invariants for loops from
the Linux source, as well as for the benchmark code used in the previous
works. Our contribution is a simpler technique than the previous works
yet with a reasonable derivation power.

1 Introduction

Recently, algorithmic learning has been successfully applied to invariant gen-
eration. The new approach formalizes the invariant generation problem as an
instance of algorithmic learning: to generate an invariant is to learn a concept
from a teacher. Using a learning algorithm as a black box, one only needs to
design a mechanical teacher that guides the learning algorithm to invariants. The
learning-based framework not only simplifies the invariant generation algorithms,
the new approach can also automatically generate invariants for realistic C loops
at a reasonable cost [15].

Figure 1 shows the new framework proposed in [15]. In the figure, the CDNF
algorithm is used to drive the search of quantifier-free invariants. The CDNF
algorithm is an exact learning algorithm for Boolean formulae. It computes a

? This work was supported by the Engineering Research Center of Excellence Program
of Korea Ministry of Education, Science and Technology(MEST) / National Research
Foundation of Korea(NRF) (Grant 2010-0001717). This work was partly supported
by MoE Tier-2 grant R-252-000-411-112 and by the National Science Council of
Taiwan projects No. NSC97-2221-E-001-003-MY3, NSC97-2221-E-001-006-MY3, the
FORMES Project within LIAMA Consortium, and the French ANR project SIVES
ANR-08-BLAN-0326-01

Query

Answer

Algorithmic
Learning

SMT
Solver

Static
Analyzer

Query

Answer

...

Teacher Algorithmic
Learning

CDNF
Algorithm

Fig. 1. The learning-based framework

representation of an unknown target formula by asking a teacher two types of
queries. A membership query asks if a valuation to Boolean variables satisfies the
unknown target; an equivalence query asks if a candidate formula is equivalent to
the target. With predicate abstraction, the new approach formulates an unknown
quantifier-free invariant as the unknown target Boolean formula. One only needs
to automate the query resolution process to infer an invariant.

If an invariant was known, a mechanical teacher to resove queries can be
implemented straightforwardly. In the context of invariant generation, no invariant
is known. However, a simple randomized automatic teacher is proposed in [15].
With the help of SMT solvers, user-provided annotations, and coin tossing, one
can resolve both types of queries by a simple reduction to the satisfiability
problem of quantifier-free formulae. An ingenious feature of this design is its
random walk. Due to the lack of information, some queries cannot be resolved
decisively. In this case, the teacher simply gives a random answer. The learning
algorithm will then look for invariants consistent with both decisive and random
answers from the teacher. Since there are sufficiently many invariants for an
annotated loop in practice, almost certainly the learning algorithm can find one.

The work [15] has, however, one obvious limitation; it can only generate
quantifier-free invariants. Yet loops iterating over arrays often require invariants
quantified over indices. It will be very useful to extend the new approach to
quantified invariants. However, a näıve extension would not work. First of all, it
is not clear how to associate an arbitrarily quantified formula with a quantified
Boolean formula. There is no counterpart (a Boolean formula) for quantified
variables in, say, ∀i.i > 10. Second, there is no exact learning algorithm for
quantified Boolean formulae to the best of our knowledge. Even if an abstraction
for quantified formulae was available, we could not adopt the same learning-
based framework. Third, computability issues must be addressed because the
satisfiability problem for arbitrarily quantified formulae is undecidable. Developing
an effective invariant generation algorithm for quantified invariants is therefore
an interesting challenge to the learning-based framework.

This article is about our findings in generating quantified invariants with
algorithmic learning:

– We show that a simple combination of algorithmic learning, decision proce-
dures, predicate abstraction, and templates can automatically infer quantified

2

loop invariants. The technique is as powerful as the previous approaches [9,20]
yet is much simpler.

– The technique needs a very simple template such as “∀k.[]” or “∀k.∃i.[].”
Our algorithm can generate any quantified invariants expressible by a fixed
set of atomic propositions in the form of the given template. Moreover, the
correctness of generated invariants is verified by an SMT solver.

– The technique works in realistic settings: The proposed technique can find
quantified invariants for some Linux library, kernel, and device driver sources,
as well as for the benchmark code used in the previous work [20].

– The technique’s future improvement is free. Since our algorithm uses the two
key technologies (exact learning algorithm and decision procedures) as black
boxes, future advances of these technologies will straightforwardly benefit
our approach.

1.1 Motivating Example

In order to illustrate how our algorithm works, we briefly describe the learning
process for the max example from [20].

{m = 0 ∧ i = 0}
while i < n do if a[m] < a[i] then m = i fi; i = i+ 1 end

{∀k.k < n⇒ a[k] ≤ a[m]}

The max example examines a[0] through a[n − 1] and finds the index of the
maximal element in the array. This simple loop is annotated with the precondition
m = 0 ∧ i = 0 and the postcondition ∀k.0 ≤ k < n⇒ a[k] ≤ a[m].

Template and Atomic Propositions A template and atomic propositions are
provided manually by user. We provide the template ∀k.[]. The postcondition
is universally quantified with k and gives a hint to the form of an invariant. By
extracting from the annotated loop and adding the last two atomic propositions
from the user’s guidance, we use the following set of atomic propositions:

{i < n, m = 0, i = 0, a[m] < a[i], a[k] ≤ a[m], k < n, k < i}.

Query Resolution In this example, 20 membership queries and 6 equivalence
queries are made by the learning algorithm on average. For simplicity, let us
find an invariant that is weaker than the precondition but stronger than the
postcondition. We describe how the teacher resolves some of these queries.

– Equivalence Query: The learning algorithm starts with an equivalence query
EQ(T), namely whether ∀k.T can be an invariant. The teacher answers NO
since ∀k.T is weaker than the postcondition. Additionally, by employing an
SMT solver, the teacher returns a counterexample {m = 0, k = 1, n =
2, i = 2, a[0] = 0, a[1] = 1}, under which ∀k.T evaluates to true, whereas
the postcondition evaluates to false.

3

– Membership Query: After a few equivalence queries, a membership query
asks whether

∧
{i ≥ n, m = 0, i = 0, k ≥ n, a[k] ≤ a[m], a[m] ≥ a[i]} is a

part of an invariant. The teacher replies YES since the query is included in
the precondition and therefore should also be included in an invariant.

– Membership Query: The membership query MEM (
∧
{i < n, m = 0, i 6=

0, k < n, a[k] > a[m], k < i, a[m] ≥ a[i]}) is not resolvable because the
template is not well-formed (Definition 1) by the given membership query.
In this case, the teacher gives a random answer (YES or NO). Interestingly,
each answer leads to a different invariant for this query. If the answer is YES ,
we find an invariant ∀k.(i < n∧k ≥ i)∨ (a[k] ≤ a[m])∨ (k ≥ n); if the answer
is NO , we find another invariant ∀k.(i < n ∧ k ≥ i) ∨ (a[k] ≤ a[m]) ∨ (k ≥
n ∧ k ≥ i). This shows how our approach exploits a multitude of invariants
for the annotated loop.

1.2 Organization

We organize this paper as follows. After preliminaries in Section 2, we present
problems and solutions in Section 3. Our abstraction is briefly described in
Section 4. The details of our technique are described in Section 5. We report
experiments in Section 6, discuss related work in Section 7, then conclude in
Section 8.

2 Preliminaries

The abstract syntax of our simple imperative language is given below:

Stmt
4
= nop | Stmt; Stmt | x := Exp | b := Prop | a[Exp] := Exp |
a[Exp] := nondet | x := nondet | b := nondet |
if Prop then Stmt else Stmt | { Pred } while Prop do Stmt { Pred }

Exp
4
= n | x | a[Exp] | Exp + Exp | Exp− Exp

Prop
4
= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Pred
4
= Prop | ∀x.Pred | ∃x.Pred | Pred ∧ Pred | ¬Pred

The language has two basic types: Booleans and natural numbers. A term in Exp
is a natural number; a term in Prop is a quantifier-free formula and of Boolean
type; a term in Pred is a first-order formula. The keyword nondet is used for
unknown values from user’s input or complex structures (e.g, pointer operations,
function calls, etc.). In an annotated loop {δ} while κ do S {ε}, κ ∈ Prop is
its guard, and δ, ε ∈ Pred are its precondition and postcondition respectively.
Quantifier-free formulae of the forms b, π0 < π1, and π0 = π1 are called atomic
propositions. If A is a set of atomic propositions, then PropA and PredA denote
the set of quantifier-free and first-order formulae generated from A, respectively.

A template t[] ∈ τ is a finite sequence of quantifiers followed by a hole to be
filled with a quantifier-free formula in PropA.

τ
4
= [] | ∀I.τ | ∃I.τ.

4

Let θ ∈ PropA be a quantifier-free formula. We write t[θ] to denote the first-order
formula obtained by replacing the hole in t[] with θ. Observe that any first-order
formula can be transformed into the prenex normal form; it can be expressed in
the form of a proper template.

A precondition Pre(ρ, S) for ρ ∈ Pred with respect to a statement S is a
first-order formula that guarantees ρ after the execution of the statement S. Let
{δ} while κ do S {ε} be an annotated loop and t[] ∈ τ be a template. The
invariant generation problem with template t[] is to compute a first-order formula
t[θ] such that (1) δ ⇒ t[θ]; (2) ¬κ ∧ t[θ] ⇒ ε; and (3) κ ∧ t[θ] ⇒ Pre(t[θ], S).
Observe that the condition (2) is equivalent to t[θ]⇒ ε∨κ. We have δ ⇒ t[θ] and
t[θ]⇒ ε∨κ for any invariant t[θ]. δ and ε∨κ are subsequently called the strongest
under-approximation and weakest over-approximation to invariants respectively.

A valuation ν is an assignment of natural numbers to integer variables and
truth values to Boolean variables. If A is a set of atomic propositions and Var(A)
is the set of variables occurred in A, ValVar(A) denotes the set of valuations for
Var(A). A valuation ν is a model of a first-order formula ρ (written ν |= ρ) if ρ
evaluates to T under ν. Let B be a set of Boolean variables. We write BoolB for
the class of Boolean formulae over Boolean variables B. A Boolean valuation µ is
an assignment of truth values to Boolean variables. The set of Boolean valuations
for B is denoted by ValB. A Boolean valuation µ is a Boolean model of the
Boolean formula β (written µ |= β) if β evaluates to T under µ.

Given a first-order formula ρ, a satisfiability modulo theories (SMT) solver [6,16]
returns a model of ν if it exists. In general, SMT solver is incomplete over quan-

tified formulae and may return a potential model (written SMT (ρ)
!→ ν). It

returns UNSAT (written SMT (ρ)→ UNSAT) if the solver proves the formula
unsatisfiable. Note that an SMT solver can only err when it returns a (potential)
model. If UNSAT is returned, the input formula is certainly unsatisfiable.

CDNF Learning Algorithm [3] The CDNF (Conjunctive Disjunctive Normal
Form) algorithm is an exact algorithm that computes a representation for any
target λ ∈ BoolB by asking a teacher queries. The teacher is required to resolve
two types of queries:

– Membership query MEM (µ) where µ ∈ ValB . If the valuation µ is a Boolean
model of the target Boolean formula λ, the teacher answers YES . Otherwise,
the teacher answers NO ;

– Equivalence query EQ(β) where β ∈ BoolB . If the target Boolean formula λ
is equivalent to β, the teacher answers YES . Otherwise, the teacher gives a
counterexample. A counterexample is a valuation µ ∈ ValB such that β and
λ evaluate to different truth values under µ.

For a Boolean formula λ ∈ BoolB, define |λ|CNF and |λ|DNF to be the sizes of
minimal Boolean formulae equivalent to λ in conjunctive and disjunctive normal
forms respectively. The CDNF algorithm infers any target Boolean formula
λ ∈ BoolB with a polynomial number of queries in |λ|CNF , |λ|DNF , and |B| [3].

5

3 Problems and Solutions

Given an annotated loop and a template, we apply algorithmic learning to find
an invariant in the form of the given template. We follow the framework proposed
in [15] and deploy the CDNF algorithm to drive the search of invariants. Since the
learning algorithm assumes a teacher to answer queries, it remains to mechanize
the query resolution process (Figure 1). Let t[] be the given template and t[θ] an
invariant. We will devise a teacher to guide the CDNF algorithm to infer t[θ].

To achieve this goal, we need to address two problems. First, the CDNF
algorithm is a learning algorithm for Boolean formulae, not quantifier-free nor
quantified formulae. Second, the CDNF algorithm assumes a teacher who knows
the target t[θ] in its learning model. However, an invariant of the given annotated
loop is yet to be computed and hence unknown to us. We need to devise a teacher
without assuming any particular invariant t[θ].

For the first problem, we adopt predicate abstraction to associate Boolean
formulae with quantified formulae. Recall that the formula θ in the invariant
t[θ] is quantifier-free. Let α be an abstraction function from quantifier-free to
Boolean formulae. Then λ = α(θ) is a Boolean formula and serves as the target
function to be inferred by the CDNF algorithm.

For the second problem, we need to design algorithms to resolve queries
about the Boolean formula λ without knowing t[θ]. This is achieved by exploiting
the information derived from annotations and by making a few random guesses.
Recall that any invariant must be weaker than the strongest under-approximation
and stronger than the weakest over-approximation. Using an SMT solver, queries
can be resolved by comparing with these invariant approximations. For queries
unresolvable through approximations, we simply give random answers.

Following a similar framework to [15], we are able to infer quantified invari-
ants of a given template for annotated loops. Our solution to the quantified
invariant generation problem for annotated loops is in fact very general. It only
requires users to provide a sequence of quantifiers and a fixed set of atomic
propositions. With a number of coin tossing, our technique can infer arbitrary
quantified invariants representable by the user inputs. This suggests that the
algorithmic learning approach to invariant generation has great potential in
invariant generation problems.

4 Predicate Abstraction with a Template

We begin with the association between Boolean formulae and first-order formulae
in the form of a given template. Let A be a set of atomic propositions and

B(A)
4
= {bp : p ∈ A} the set of corresponding Boolean variables. Figure 2 shows

the abstraction used in our algorithm. The left box represents the class PredA
of first-order formulae generated from A. The middle box corresponds to the
class PropA of quantifier-free formulae generated from A. Since we are looking for
quantified invariants in the form of the template t[], PropA is in fact the essence
of generated quantified invariants. The right box contains the class BoolB(A) of

6

ValVar(A)

PropAPredA

ValB(A)

BoolB(A)

λθ.t[θ]

α∗

γ∗

γ

α

Fig. 2. The domains PredA, PropA, and BoolB(A)

Boolean formulae over the Boolean variables B(A). The CDNF algorithm infers
a target Boolean formula by posing queries in this domain.

The pair (γ, α) gives the correspondence between the domains BoolB(A) and
PropA. Let us call a Boolean formula β ∈ BoolB(A) a canonical monomial if it is
a conjunction of literals, where each variable appears exactly once. Define

γ : BoolB(A) → PropA α : PropA → BoolB(A)

γ(β) = β[bp 7→ p]
α(θ) =

∨
{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

Concretization function γ(β) ∈ PropA simply replaces Boolean variables in B(A)
by corresponding atomic propositions in A. On the other hand, α(θ) ∈ BoolB(A)

is the abstraction for any quantifier-free formula θ ∈ PropA.
A Boolean valuation µ ∈ ValB(A) is associated with a quantifier-free formula

γ∗(µ) and a first-order formula t[γ∗(µ)]. A valuation ν ∈ Var(A) moreover
induces a natural Boolean valuation α∗(ν) ∈ ValB(A).

γ∗(µ) =
∧

p∈A
{p : µ(bp) = T} ∧

∧
p∈A
{¬p : µ(bp) = F}

α∗(ν)(bp) = ν |= p

The following lemmas characterize relations among these functions:

Lemma 1 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, β ∈
BoolB(A), and ν a valuation for Var(A). Then

1. ν |= θ if and only if α∗(ν) |= α(θ); and
2. ν |= γ(β) if and only if α∗(ν) |= β.

Lemma 2 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, and µ a
Boolean valuation for B(A). Then γ∗(µ)⇒ θ if and only if µ |= α(θ).

5 Learning Quantified Invariants

We present our query resolution algorithms, followed by the invariant generation
algorithm. The query resolution algorithms exploit the information derived from
the given annotated loop {δ} while κ do S {ε}. Let ι, ι ∈ Pred. We say ι is an

7

Algorithm 1: Resolving Equivalence Queries

/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: β ∈ BoolB(A)

Output: YES , or a counterexample ν s.t. α∗(ν) |= β ⊕ λ
ρ := t[γ(β)];1

if SMT (ι ∧ ¬ρ)→ UNSAT and SMT (ρ ∧ ¬ι)→ UNSAT and2

SMT (κ ∧ ρ ∧ ¬Pre(ρ, S))→ UNSAT then return YES ;3

if SMT (ι ∧ ¬ρ)
!→ ν then return α∗(ν);4

if SMT (ρ ∧ ¬ι) !→ ν then return α∗(ν);5

if SMT (ρ ∧ ¬ι) !→ ν0 or SMT (ι ∧ ¬ρ)
!→ ν1 then6

return α∗(ν0) or α∗(ν1) randomly ;7

ιρ

ν

ρ

ν

ι ι

ι

ρ

ν0 ν1

(a) (b) (c)

Fig. 3. Counterexamples in equivalence query resolution (c.f. Algorithm 1): (a)
a counterexample inside the under-approximation ι but outside the candidate
ρ (line 4); (b) a counterexample inside the candidate ρ but outside the over-
approximation ι (line 5); (c) a random counterexample ν0 (or ν1) inside the
candidate ρ (or over-approximation ι) but out of the under-approximation ι (or
candidate ρ), respectively (line 6 and 7).

under-approximation to invariants if δ ⇒ ι and ι⇒ ι for some invariant ι of the
annotated loop. Similarly, ι is an over-approximation to invariants if ι⇒ ε ∨ κ
and ι⇒ ι for some invariant ι. The strongest under-approximation δ is an under-
approximation; the weakest over-approximation ε ∨ κ is an over-approximation.
Better invariant approximations can be obtained by other techniques; they can
be used in our query resolution algorithms.

5.1 Equivalence Queries

An equivalence query EQ(β) with β ∈ BoolB(A) asks if β is equivalent to the
unknown target λ. Algorithm 1 gives our equivalence resolution algorithm. It first
checks if ρ = t[γ(β)] is indeed an invariant for the annotated loop by verifying
ι ⇒ ρ, ρ ⇒ ι, and κ ∧ ρ ⇒ Pre(ρ, S) with an SMT solver (line 2 and 3). If so,

8

the CDNF algorithm has generated an invariant and our teacher acknowledges
that the target has been found. If the candidate ρ is not an invariant, we need
to provide a counterexample. Figure 3 describes the process of counterexample
discovery. The algorithm first tries to generate a counterexample inside of under-
approximation (a), or outside of over-approximation (b). If it fails to find such
counterexamples, the algorithm tries to return a valuation distinguishing ρ from
invariant approximations as a random answer (c).

Recall that SMT solvers may err when a potential model is returned (line 4 –
6). If it returns an incorrect model, our equivalence resolution algorithm will give
an incorrect answer to the learning algorithm. Incorrect answers effectively guide
the CDNF algorithm to different quantified invariants. Note also that random
answers do not yield incorrect results because the equivalence query resolution
algorithm uses an SMT solver to verify that the found first-order formula is
indeed an invariant.

5.2 Membership Queries

Algorithm 2: Resolving Membership Queries

/* ι : an under-approximation; ι : an over-approximation */

/* t[]: the given template */

Input: a valuation µ for B(A)
Output: YES or NO
if SMT (γ∗(µ))→ UNSAT then return NO ;1

ρ := t[γ∗(µ)];2

if SMT (ρ ∧ ¬ι) !→ ν then return NO ;3

if SMT (ρ ∧ ¬ι)→ UNSAT and isWellFormed(t[], γ∗(µ)) then return YES ;4

return YES or NO randomly5

In a membership query MEM (µ), our membership query resolution algorithm
(Algorithm 2) should answer whether µ |= λ. Note that any relation between
atomic propositions A is lost in the abstract domain BoolB(A). A valuation may
not correspond to a consistent quantifier-free formula (for example, bx=0 = bx>0 =
T). If the valuation µ ∈ ValB(A) corresponds to an inconsistent quantifier-free
formula (that is, γ∗(µ) is unsatisfiable), we simply answer NO to the membership
query (line 1). Otherwise, we compare ρ = t[γ∗(µ)] with invariant approximations.
Figure 4 shows the scenarios when queries can be answered by comparing ρ with
invariant approximations. In case 4(a), ρ⇒ ι does not hold and we would like to
show µ 6|= λ. This requires the following lemma:

Lemma 3. Let t[] ∈ τ be a template. For any θ1, θ2 ∈ PropA, θ1 ⇒ θ2 implies
t[θ1]⇒ t[θ2].1

1 Complete proofs are in [5]

9

ρ

ν

ι
ι

ρ

(a) (b)

Fig. 4. Resolving a membership query with invariant approximations (c.f. Algo-
rithm 2): (a) the guess ρ is not included in the over-approximation ι (line 3); (b)
the guess ρ is included in the under-approximation ι (line 4).

By Lemma 3 and t[γ∗(µ)] 6⇒ ι (line 3), we have γ∗(µ) 6⇒ γ(λ). Hence µ 6|= λ
(Lemma 2).

For case 4(b), we have ρ ⇒ ι and would like to show µ |= λ. However, the
implication t[θ1]⇒ t[θ2] carries little information about the relation between θ1
and θ2. Consider t[] ≡ ∀i.[], θ1 ≡ i < 10, and θ2 ≡ i < 1. We have ∀i.i < 10 ⇒
∀i.i < 1 but i < 10 6⇒ i < 1. In order to infer more information from ρ⇒ ι, we
introduce a subclass of templates.

Definition 1. Let θ ∈ PropA be a quantifier-free formula over A. A well-formed
template t[] with respect to θ is defined as follows.

– [] is well-formed with respect to θ;
– ∀I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ

and t′[θ]⇒ ∀I.t′[θ];
– ∃I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ

and ¬t′[θ].

Using an SMT solver, it is straightforward to check if a template t[] is well-
formed with respect to a quantifier-free formula θ by a simple recursion. For
instance, when the template is ∀I.t′[], it suffices to check SMT (t′[θ]∧∃I.¬t′[θ])→
UNSAT and t′[] is well-formed with respect to θ. More importantly, well-formed
templates allow us to infer the relation between hole-filling quantifier-free formu-
lae.

Lemma 4. Let A be a set of atomic propositions, θ1 ∈ PropA, and t[] ∈ τ a
well-formed template with respect to θ1. For any θ2 ∈ PropA, t[θ1]⇒ t[θ2] implies
θ1 ⇒ θ2.

By Lemma 4 and 2, we have µ |= λ from ρ⇒ ι (line 4) and the well-formedness
of t[] with respect to γ∗(µ). As in the case of the equivalence query resolution
algorithm, incorrect models from SMT solvers (line 3) simply guide the CDNF
algorithm to other quantified invariants. Note that Algorithm 2 also gives a

10

random answer if a membership query cannot be resolved through invariant
approximations. The correctness of generated invariants is ensured by SMT
solvers in the equivalence query resolution algorithm (Algorithm 1).

5.3 Main Loop

Algorithm 3: Main Loop

Input: {δ} while κ do S {ε} : an annotated loop; t[] : a template
Output: an invariant in the form of t[]
ι := δ;1

ι := κ ∨ ε;2

repeat3

try4

λ := call CDNF with query resolution algorithms (Algorithm 1 and 2)5

when inconsistent → continue6

until λ is defined ;7

return t[γ(λ)];8

Algorithm 3 shows our invariant generation algorithm. It invokes the CDNF
algorithm in the main loop. Whenever a query is made, our algorithm uses one
of the query resolution algorithms (Algorithm 1 or 2) to give an answer. In both
query resolution algorithms, we use the strongest under-approximation δ and the
weakest over-approximation κ ∨ ε to resolve queries from the learning algorithm.
Observe that the equivalence and membership query resolution algorithms give
random answers independently. They may send inconsistent answers to the CDNF
algorithm. When inconsistencies arise, the main loop forces the learning algorithm
to restart (line 6). If the CDNF algorithm infers a Boolean formula λ ∈ BoolB(A),
the first-order formula t[γ(λ)] is an invariant for the annotated loop in the form
of the template t[].

In contrast to traditional deterministic algorithms, our algorithm gives random
answers in both query resolution algorithms. Due to the undecidability of first-
order theories in SMT solvers, verifying quantified invariants and comparing
invariant approximations are not solvable in general. If we committed to a
particular solution deterministically, we would be forced to address computability
issues. Random answers simply divert the learning algorithm to search for other
quantified invariants and try the limit of SMT solvers. They could not be effective
if there were very few solutions. Our thesis is that there are sufficiently many
invariants for any given annotated loop in practice. As long as our random
answers are consistent with one verifiable invariant, the CDNF algorithm is
guaranteed to generate an invariant for us.

Similar to other invariant generation techniques based on predicate abstraction,
our algorithm is not guaranteed to generate invariants. If no invariant can be
expressed by the template with a given set of atomic propositions, our algorithm
will not terminate. Moreover, if no invariant in the form of the given template
can be verified by SMT solvers, our algorithm does not terminate either. On the

11

case Template AP MEM EQ MEMR EQR ITER Time (s) σTime(s)

max ∀k.[] 7 5,968 1,742 65% 26% 269 5.71 7.01

selection sort ∀k1.∃k2.[] 6 9,630 5,832 100% 4% 1,672 9.59 11.03

devres ∀k.[] 7 2,084 1,214 91% 21% 310 0.92 0.66

rm pkey ∀k.[] 8 2,204 919 67% 20% 107 2.52 1.62

tracepoint1 ∃k.[] 4 246 195 61% 25% 31 0.26 0.15

tracepoint2 ∀k1.∃k2.[] 7 33,963 13,063 69% 5% 2,088 157.55 230.40

Table 1. Experimental Results.
AP : # of atomic propositions, MEM : # of membership queries, EQ : # of equivalence
queries, MEMR : fraction of randomly resolved membership queries to MEM , EQR

fraction of randomly resolved equivalence queries to EQ , ITER : # of the CDNF
algorithm invocations, and σTime : standard deviation of the running time.

other hand, if there is one verifiable invariant in the form of the given template,
there is a sequence of random answers that leads to the verifiable invariant. If
sufficiently many verifiable invariants are expressible in the form of the template,
random answers almost surely guide the learning algorithm to one of them. Since
our algorithmic learning approach with random answers does not commit to any
particular invariant, it can be more flexible and hence effective than traditional
deterministic techniques in practice.

6 Experiments

We have implemented a prototype2 in OCaml. In our implementation, we use
Yices as the SMT solver to resolve queries (Algorithm 1 and 2). Table 1 shows
experimental results. We took two cases from the ten benchmarks in [20] with the
same annotation (max and selection sort). We also chose four for statements
from Linux 2.6.28. We translated them into our language and annotated pre-
and post-conditions manually. Sets of atomic proposition are manually chosen
from the program texts. Benchmark devres is from library, tracepoint1 and
tracepoint2 are from kernel, and rm pkey is from InfiniBand device driver. The
data are the average of 500 runs and collected on a 2.66GHz Intel Core2 Quad
CPU with 8GB memory running Linux 2.6.28.

devres from Linux Library Figure 5(c) shows an annotated loop extracted
from a Linux library.3 In the postcondition, we assert that ret implies tbl [i] = 0,
and every element in the array tbl [] is not equal to addr otherwise. Using the
set of atomic propositions {tbl [k] = addr , i < n, i = n, k < i, tbl [i] = 0, ret} and
the simple template ∀k.[], our algorithm finds following quantified invariants in
different runs:

∀k.(k < i⇒ tbl [k] 6= addr) ∧ (ret ⇒ tbl [i] = 0) and ∀k.(k < i)⇒ tbl[k] 6= addr.

2 Available at http://ropas.snu.ac.kr/aplas10/qinv-learn-released.tar.gz
3 The source code can be found in function devres of lib/devres.c in Linux 2.6.28

12

http://ropas.snu.ac.kr/aplas10/qinv-learn-released.tar.gz

(a) rm pkey

{ i = 0 ∧ key 6= 0 ∧ ¬ret ∧ ¬break}
1 while(i < n ∧ ¬break) do
2 if(pkeys[i] = key) then
3 pkeyrefs[i]:=pkeyrefs[i]− 1;
4 if(pkeyrefs[i] = 0) then
5 pkeys[i]:=0; ret:=true;
6 break :=true;
7 else i:=i + 1;
8 done
{(¬ret ∧ ¬break)⇒ (∀k.k < n⇒ pkeys[k] 6= key)
∧(¬ret ∧ break)⇒ (pkeys[i] = key ∧ pkeyrefs[i] 6= 0)
∧ ret ⇒ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0) }

(c) devres

{ i = 0 ∧ ¬ret }
1 while i < n ∧ ¬ret do
2 if tbl[i] = addr then
3 tbl[i]:=0; ret:=true
4 else
5 i:=i + 1
6 end
{(¬ret ⇒ ∀k. k < n⇒ tbl[k] 6= addr)
∧(ret ⇒ tbl[i] = 0) }

(b) selection sort

{ i = 0 }
1 while i < n− 1 do
2 min:=i;
3 j :=i + 1;
4 while j < n do
5 if a[j] < a[min] then
6 min:=j;
7 j:=j + 1;
8 done
9 if i 6=min then

10 tmp:=a[i];
11 a[i]:=a[min];
12 a[min]:=tmp;
13 i:=i + 1;
14 done
{(i ≥ n− 1)
∧ (∀k1.k1 < n⇒

(∃k2.k2 < n ∧ a[k1] =
′a[k2]))}

Fig. 5. Benchmark Examples: (a) rm pkey from Linux InfiniBand driver, (b)
selection sort from [20], and (c) devres from Linux library.

Observe that our algorithm is able to infer an arbitrary quantifier-free formula
(over a fixed set of atomic propositions) to fill the hole in the given template. A
simple template such as ∀k.[] suffices to serve as a hint in our approach.

selection sort from [20] Consider the selection sort algorithm in Figure 5(b).
Let ′a[] denote the content of the array a[] before the algorithm is executed. The
postcondition states that the contents of array a[] come from its old contents.
In this test case, we apply our invariant generation algorithm to compute an
invariant to establish the postcondition of the outer loop. For computing the
invariant of the outer loop, we make use of the inner loop’s specification.

We use the following set of atomic propositions: {k1 ≥ 0, k1 < i, k1 = i,
k2 < n, k2 = n, a[k1] = ′a[k2], i < n−1, i = min}. Using the template ∀k1.∃k2.[],
our algorithm infers following invariants in different runs:

∀k1.(∃k2.[(k2 < n ∧ a[k1] = ′a[k2]) ∨ k1 ≥ i]); and
∀k1.(∃k2.[(k1 ≥ i ∨min = i ∨ k2 < n) ∧ (k1 ≥ i ∨ (min 6= i ∧ a[k1] =′ a[k2]))]).

Note that all membership queries are resolved randomly due to the alternation of
quantifiers in array theory. Still a simple random walk suffices to find invariants in
this example. Moreover, templates allow us to infer not only universally quantified
invariants but also first-order invariants with alternating quantifications. Inferring
arbitrary quantifier-free formulae over a fixed set of atomic propositions again
greatly simplifies the form of templates used in this example.

13

rm pkey from Linux InfiniBand Driver Figure 5(a) is a while statement
extracted from Linux InfiniBand driver.4 The conjuncts in the postcondition
represent (1) if the loop terminates without break, all elements of pkeys are
not equal to key (line 2); (2) if the loop terminates with break but ret is false,
then pkeys[i] is equal to key (line 2) but pkeyrefs[i] is not equal to zero (line
4); (3) if ret is true after the loop, then both pkeyrefs[i] (line 4) and pkeys[i]
(line 5) are equal to zero. From the postcondition, we guess that an invariant
can be universally quantified with k. Using the simple template ∀k.[] and the
set of atomic propositions {ret , break , i < n, k < i , pkeys[i] = 0, pkeys[i] = key ,
pkeyrefs[i] = 0, pkeyrefs[k] = key}, our algorithm finds following quantified
invariants in different runs:

(∀k.(k < i)⇒ pkeys[k] 6= key) ∧ (ret ⇒ pkeyrefs[i] = 0 ∧ pkeys[i] = 0)
∧ (¬ret ∧ break ⇒ pkeys[i] = key ∧ pkeyrefs[i] 6= 0); and

(∀k.(¬ret ∨ ¬break ∨ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0)) ∧ (pkeys[k] 6= key ∨ k ≥ i)
∧(¬ret ∨ (pkeyrefs[i] = 0 ∧ pkeys[i] = 0 ∧ i < n ∧ break))

∧ (¬break ∨ pkeyrefs[i] 6= 0 ∨ ret) ∧ (¬break ∨ pkeys[i] = key ∨ ret)).

In spite of undecidability of first-order theories in Yices and random answers,
each of the 3000 (= 6×500) runs in our experiments infers an invariant successfully.
Moreover, several quantified invariants are found in each case among 500 runs.
This suggests that invariants are abundant. Note that the templates in the
test cases selection sort and tracepoint2 have alternating quantification.
Satisfiability of alternating quantified formulae is in general undecidable. That is
why both cases have substantially more restarts than the others. Interestingly,
our algorithm is able to generate a verifiable invariant in each run. Our simple
randomized mechanism proves to be effective even for most difficult cases.

7 Related Work

Comparing with the work [15] of generating quantifier-free invariants, we develop
the following technical extensions. First, we integrate potential counterexamples
in resolving equivalence query algorithm (line 6 - 7 in Algorithm 1, and line 3 in
Algorithm 2) instead of restarting. Due to the undecidability of satisfiability of
quantified formulae, SMT solvers often give potential counterexamples. We exploit
potential counterexamples to enhance our algorithm. Second, a new condition
(Definition 1) to answer positively in resolving membership queries is proposed.
Without this condition, we can answer negatively to membership queries.

In contrast to previous template-based approaches [20,9], our template is more
general as it allows arbitrary hole-filling quantifier-free formulae. The templates
in [20] can only be filled with formulae over conjunctions of predicates from a
given set. Any disjunction must be explicitly specified as part of a template.
In [9], the authors consider invariants of the form E ∧

∧n
j=1 ∀Uj(Fj ⇒ ej), where

E,Fj and ej must be quantifier free finite conjuctions of atomic facts.

4 The source code can be found in function rm pkey of drivers/infiniband/hw/

ipath/ipath mad.c in Linux 2.6.28

14

Existing technologies can strengthen our framework. Firstly, its completeness
can be increased by more powerful decision procedures [6,8,21] and theorem
provers [18,1,19]. Moreover, our approach can be improved by using more accurate
approximations from existing invariant generation techniques. The tool InvGen
collects reached states satisfying the program invariants, and also computes a
collection of invariants for efficient invariant generation [11]. They can be used
as under- and over-approximations, respectively.

Regarding the generation of unquantified invariants, a constraint analysis
approach is proposed in [10]. Invariants in the combined theory of linear arithmetic
and uninterpreted functions are synthesized in [2], while InvGen [11] presents an
efficient approach for linear arithmetic invariants. For quantified loop invariants,
Skolemization is used for generating universally quantified invariants [7]. In [18],
a paramodulation-based saturation prover is extended to generate universally
quantified invariants by interpolation.

With respect to the analysis of properties of array contents, Halbwachs
et al. [12] handle programs which manipulate arrays by sequential traversal,
incrementing (or decrementing) their index at each iteration, and which access
arrays by simple expressions of the loop index. A loop property generation
method for loops iterating over multi-dimensional arrays is introduced in [13].
For inferring range predicates, Jhala and McMillan [14] described a framework
that uses infeasible counterexample paths. As a deficiency, the prover may find
proofs refuting short paths, but which do not generalize to longer paths. Due to
this problem, this approach [14] fails to prove that an implementation of insertion
sort correctly sorts an array.

8 Conclusions

By combining algorithmic learning, decision procedures, predicate abstraction,
and templates, we present a technique for generating quantified invariants. The
new technique searches for invariants in the given template form guided by
query resolution algorithms. We exploit the flexibility of algorithmic learning by
deploying a randomized query resolution algorithm. When there are sufficiently
many invariants, random answers will not prevent algorithmic learning from
inferring verifiable invariants. Our experiments show that our learning-based ap-
proach is able to infer non-trivial quantified invariants with this näıve randomized
resolution for some loops extracted from Linux drivers.

Under- and over-approximations are presently derived from annotations pro-
vided by users. They can in fact be obtained by other techniques such as static
analysis. For deciding the set of atomic propositions, it will be interesting whether
existing techniques [4,17] are applicable. The integration of various refinement
techniques for predicate abstraction will certainly be an important future work.

Acknowledgment We are grateful to Wontae Choi, Suwon Jang, Will
Klieber, Wonchan Lee, Ben Lickly, Bruno Oliveira, and Sungwoo Park for their
detailed comments and helpful suggestions. We also thank Heejae Shin for imple-
menting OCaml binding for Yices.

15

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

2. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis
for combined theories. In: VMCAI. (2007) 378–394

3. Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Infor-
mation and Computation 123 (1995) 146–153

4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. Volume 1855 of LNCS., Springer (2000) 154–169

5. David, C., Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Inferring quantified invariants
via algorithmic learning, decision procedure, and predicate abstraction. Technical
Memorandum ROSAEC-2010-007, Research On Software Analysis for Error-Free
Computing (2010)

6. Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI Interna-
tional (2006)

7. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
ACM (2002) 191–202

8. Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In: CAV. Volume 5643 of LNCS., Springer-Verlag (2009) 306–320

9. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified
logical domains. In: POPL, ACM (2008) 235–246

10. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: VMCAI. Volume 5403 of LNCS., Springer (2009)
120–135

11. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: CAV.
Volume 5643 of LNCS., Springer (2009) 634–640

12. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: PLDI. (2008) 339–348

13. Henzinger, T.A., Hottelier, T., Kovács, L., Voronkov, A.: Invariant and type
inference for matrices. In: VMCAI. (2010) 163–179

14. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: CAV, volume 4590
of LNCS, Springer (2007) 193–206

15. Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic
by algorithmic learning, decision procedure, and predicate abstraction. In: VMCAI.
Volume 5944 of LNCS., Springer (2010) 180–196

16. Kroening, D., Strichman, O.: Decision Procedures an algorithmic point of view.
EATCS. Springer (2008)

17. McMillan, K.L.: Lazy abstraction with interpolants. In Ball, T., Jones, R.B., eds.:
CAV. Volume 4144 of LNCS., Springer (2006) 123–136

18. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: TACAS. Volume 4693 of LNCS., Springer (2008) 413–427

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

20. Srivastava, S., Gulwani, S.: Program verification using templates over predicate
abstraction. In: PLDI, ACM (2009) 223–234

21. Srivastava, S., Gulwani, S., Foster, J.S.: VS3: SMT solvers for program verification.
In: CAV. Volume 5643 of LNCS. (2009) 702–708

16

	Automatically Inferring Quantified Loop Invariants by Algorithmic Learning from Simple Templates

