
International Journal of Cooperative Information Systems
fc World Scienti�c Publishing Company

COORDINATION OF MULTIPLE INTELLIGENT SOFTWARE AGENTS

KATIA SYCARA�

The Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213, United States of America

and

DAJUN ZENGy

The Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213, United States of America

Received

Revised

We are investigating techniques for developing distributed and adaptive collections of

information agents that coordinate to retrieve, �lter and fuse information relevant to the

user, task and situation, as well as anticipate user's information needs. In our system of

agents, information gathering is seamlessly integrated with decision support. The task

for which particular information is requested of the agents does not remain in the user's

head but it is explicitly represented and supported through agent collaboration. In this

paper we present the distributed system architecture, agent collaboration interactions,

and a reusable set of software components for structuring agents. The system architec-

ture has three types of agents: Interface agents interact with the user receiving user

speci�cations and delivering results. They acquire, model, and utilize user preferences

to guide system coordination in support of the user's tasks. Task agents help users per-

form tasks by formulating problem solving plans and carrying out these plans through

querying and exchanging information with other software agents. Information agents

provide intelligent access to a heterogeneous collection of information sources. We have

implemented this system framework and are developing collaborating agents in diverse

complex real world tasks, such as organizational decisionmaking, investment counseling,

health care, and electronic commerce.

Keywords: Software Agent; Distributed AI; Coordination; Information Agent; Internet

Applications

�Email Address: katia@cs.cmu.edu, Web Homepage: http://www.cs.cmu.edu/�sycara/
yEmail Address: dajun.zeng@cs.cmu.edu, Web Homepage: http://www.cs.cmu.edu/�zeng/

1



2 Coordination of Multiple Intelligent Software Agents

1. Introduction

Current networking technology and the ready availability of vast amounts of data

and information on the Internet-based Infosphere present great opportunities for

bringing to decision makers and decision support systems more abundant and accu-

rate information. The use of the Internet has accelerated at an unprecedented pace.

However, e�ective use of the Internet by humans or decision support machine sys-

tems has been hampered by some dominant characteristics of the Infosphere. First,

information available from the net is unorganized, multi-modal, and distributed on

server sites all over the world. Second, the number and variety of data sources and

services is dramatically increasing every day. Furthermore, the availability, type and

reliability of information services are constantly changing. Third, the same piece of

information can be accessible from a variety of di�erent information sources. Fourth,

information is ambiguous and possibly erroneous due to the dynamic nature of the

information sources and potential information updating and maintenance problems.

Therefore, information is becoming increasingly more di�cult for a person or ma-

chine system to collect, �lter, evaluate, and use in problem solving. As a result, the

problem of locating information sources, accessing, �ltering, and integrating infor-

mation in support of decision making, as well as coordinating information retrieval

and problem solving e�orts of information sources and decision-making systems has

become a very critical task.

The notion of Intelligent Software Agents has been proposed to address this

challenge1;2;3;4;5;6. Although a precise de�nition of an intelligent agent is still forth-

coming, the current working notion is that Intelligent Software Agents are programs

that act on behalf of their human users in order to perform laborious information

gathering tasks, such as locating and accessing information from various on-line

information sources, resolve inconsistencies in the retrieved information, �lter away

irrelevant or unwanted information, integrate information from heterogeneous in-

formation sources, and adapt over time to their human users' information needs

and the shape of the Infosphere. Most current agent-oriented approaches have fo-

cussed on what we call interface agents|a single agent with simple knowledge and

problem solving capabilities whose main task is information �ltering to alleviate the

user's cognitive overload7;8. Another type of agent is the SoftBot 9, a single agent

with general knowledge that performs a wide range of user-delegated information-

�nding tasks. We believe that such centralized approaches have several limitations.

A single general agent would need an enormous amount of knowledge to be able to

deal e�ectively with user information requests that cover a variety of tasks. In ad-

dition, a centralized system constitutes a processing bottleneck and a \single point

of failure". Furthermore, unless the agent has beyond the state of the art learning

capabilities, it would need considerable reprogramming to deal with the appearance

of new agents and information sources in the environment. Finally, because of the

complexity of the information �nding and �ltering task, and the large amount of



International Journal of Cooperative Information Systems 3

information, the required processing would overwhelm a single agent.

Another proposed solution is to use multi-agent computer systems to access,

�lter, evaluate, and integrate this information 6;10. Such multi-agent systems can

compartmentalize specialized task knowledge, organize themselves to avoid process-

ing bottlenecks, and can be built expressly to deal with dynamic changes in the agent

and information-source landscape. In addition, Multiple Intelligent Coordinating

Agents are ideally suited to the predominant characteristics of the Infosphere, such

as the heterogeneity of the information sources, the diversity of information gath-

ering and problem solving tasks that the gathered information supports, and the

presence of multiple users with related information needs. We therefore believe that

a distributed approach is superior, and possibly the only one that would work for

information gathering and coherent information fusion.

The context of multi-agent systems widens the notion of intelligent agent in at

least two general ways. First, an agent's \user" that imparts goals to it and delegates

tasks can be not only a human but also another agent. Second, an agent must have

been designed with explicit mechanisms for communicating and interacting with

other agents. Our notion is that such multi agent systems may comprise interface

agents tied closely to an individual human's goals, task agents involved in the

processes associated with arbitrary problem-solving tasks, and information agents

that are closely tied to a source or sources of data.

In this paper, we report on our work on developing distributed collections of

intelligent software agents that cooperate asynchronously to perform goal-directed

information retrieval and information integration in support of performing a variety

of decision making tasks. In particular, we will address research issues involved in

designing such multiple Intelligent Agents. We will focus on three crucial charac-

teristics of our architecture that di�erentiate our work from others: (1) multi-agent

system where the agents operate asynchronously and collaborate with each other

and their users, (2) the agents actively seek out information, and (3) the informa-

tion gathering is seamlessly integrated with problem solving and decision support.

We will present the overall architectural framework, our agent design commitments,

and agent architecture to enable the above characteristics. We will draw examples

from our work on Intelligent Agents in the domains of Organizational Decision Mak-

ing (the PLEIADES system), Financial Portfolio Management (the WARREN INC

system), Emergency Medical Care (the HIN system), and Electronic Commerce.

The rest of the paper is organized as follows. Section 2 motivates the distributed

architecture for intelligent information retrieval and problem solving, and presents

an overview of the system architecture, the di�erent types of agents in the proposed

multi agent organization, and agent coordination. Section 3 presents in detail the

reusable agent architecture and discusses planning, control, and execution moni-

toring in agent operations. Section 4 presents related work. The application of

our implemented framework in various domains is described in Section 5. In this

section, a detailed scenario of everyday organizational decision making is given to

illustrate the interactions among software agents. Section 6 presents concluding



4 Coordination of Multiple Intelligent Software Agents

remarks.

2. Distributed Architecture for Intelligent Information Processing and

Problem Solving

In this section, we motivate and describe the distributed architecture and coordina-

tion mechanisms of the coordinating agents for intelligent information retrieval and

problem solving. This distributed architecture has been motivated by the following

considerations:

� Distributed information sources: Information sources available on-line are in-

herently distributed. Furthermore, these sources typically are of di�erent

modalities. Therefore it is natural to adopt a distributed architecture consist-

ing of many software agents specialized for di�erent heterogeneous information

sources.

� Sharability: Typically, user applications need to access several services or re-

sources in an asynchronous manner in support of a variety of tasks. It would

be wasteful to replicate agent information gathering or problem solving capa-

bilities for each user and each application. It is desirable that the architecture

support sharability of agent capabilities and retrieved information.

� Complexity hiding: Often information retrieval in support of a task involves

quite complex coordination of many di�erent agents. To avoid overloading

the user with a confusing array of di�erent agents and agent interfaces, it

is necessary to develop an architecture that hides the underlying distributed

information gathering and problem solving complexity from the user.

� Modularity and Reuseability: Although software agents will be operating on

behalf of their individual patrons|human users, or other agents, pieces of

agent code for a particular task can be copied from one agent to another and

can be customized for new users to take into consideration particular users'

preferences or idiosyncrasies. One of the basic ideas behind the distributed

agent-based approach is that software agents will be kept simple for ease of

maintenance, initialization and customization. Another facet of reuseability is

that pre-existing information services, whose implementation, query language

and communication channels are beyond the control of user applications, could

be easily incorporated in problem-solving.

� Flexibility: Software agents can interact in new con�gurations \on-demand",

depending on the information requirements of a particular decision making

task.

� Robustness: When information and control is distributed, the system is able to

degrade gracefully even when some of the agents are out of service temporarily.

This feature has signi�cant practical implications because of the dynamic and

unstable nature of on-line information services.



International Journal of Cooperative Information Systems 5

� Quality of Information: The existence of (usually partial) overlapping of

available information items from multiple information sources o�ers the op-

portunity to ensure (and probably enhance) the correctness of data through

cross-validation. Software agents providing the same piece of information can

interact and negotiate to �nd the most accurate data.

� Legacy Data: Many existing information sources have been developed prior

to the emergence of the Internet-based agent technology. New functionalities

and access methods are necessary for them to become full-edged members

of the new information era. Directly updating these systems, however, is a

nontrivial task. A more preferable way of updating is to construct agent wrap-

pers around existing systems. These agent wrappers interface the information

sources and information consumers and provide a uniform way of accessing

the data as well as o�er additional functionalities such as monitoring changes.

This agent wrapper approach o�ers much exibility and extensibility. Practi-

cally speaking, it is also easier to implement since the internal data structure

and updating mechanism of the legacy information systems don't need to be

modi�ed.

The above considerations clearly motivate the development of systems of dis-

tributed software agents for information gathering and decision support in the

Internet-based information environment. The critical question then is how to struc-

ture and organize these multiple software agents. Our major research goal is to

construct reusable software components in such a way that building software agents

for new tasks and applications and organizing them can be relatively easy. It seems

di�cult to engineer a general agent paradigm which can cover in an e�cient man-

ner a broad range of di�erent tasks including interaction with the user, acquisition

of user preferences, information retrieval and user task-speci�c decision making.

For example, in building an agent that is primarily concerned with interacting with

a human user, we need to emphasize acquisition, modeling, and utilization of user

information needs and preferences. On the other hand, in developing an agent

that interacts with information sources, issues of acquiring user preferences are de-

emphasized and, instead, issues of information source availability, e�ciency of data

access, data quality and information source reliability become critical. Therefore,

reusable software components must e�ciently address the critical issues associated

with each of these three agent categories.

There have been several proposals in the literature for generic agent frameworks

(see Section 4). These architectures typically have not been tested in truly multi-

agent environments. They provide very high level design guidance that is not very

informative for structuring real time systems that operate e�ciently for real complex

tasks involving coordination, information gathering, and user interaction. This

is the major reason why we have decided to di�erentiate agents in our system

architecture in terms of their functionality and communications needs. In particular,

we distinguish three di�erent types of agents, interface agents, task agents, and



6 Coordination of Multiple Intelligent Software Agents

information agents. The architecture of all these agents follows the general BDI

type philosophy 2, however, each of them embodies particular architectural design

commitments to make them e�ective in dealing with the particular category of issues

of its type. We believe that it is easier and more productive to develop, implement

and test in real information environments, reusable agent architectures for each

of these agent categories. As our point of departure, we use the Task Control

Architecture (TCA) framework 11 which we extend and specialize for real-time user

interaction, information gathering, and decision support tasks in the Infosphere.

Before we present the general agent architecture and coordination in Section 3, we

discuss the characteristics of the di�erent types of agents.

2.1. Agent Types

USER 1 USER 2 USER h

query answer

Conflict
Resolution

Information Integration
Information
Request

Reply

DataBase 1 DataBase 2 DataBase k

Collaborative

Query Processing

Interface Agent 2

TaskAgent 1 TaskAgent 2 TaskAgent j

Interface Agent k

InfoAgent 1 InfoAgent 2 InfoAgent n

Task Proposed Solution

Task

Interface Agent 1

Goals and Task
Specifications

Results

Figure 1: Distributed System Architecture

Our design decision to di�erentiate interface agents, task-speci�c agents, and

information-speci�c agents (See Figure 1) was based on the following observations:



International Journal of Cooperative Information Systems 7

1. In real world applications, there seems to be a natural distinction between in-

formation sources and user delegated decision making components. In a multi-

agent architecture, delegating di�erent types of responsibilities, namely, infor-

mation accessing and user task-oriented decision making, to di�erent types of

software agents tasks is natural. This di�erentiation also aids user intuition

in understanding the functioning of the system.

2. From the software engineering point of view, because there are many inter-

actions between information sources and information consumers, assigning

separate software components to manage information sources and to handle

user-speci�c and task-speci�c decision making, respectively, can help enhance

software modularity and reuseability. This becomes more obvious in situ-

ations where a certain information source is accessed by many information

consumers. Having one (or a small set of) information-speci�c agent respon-

sible for that information source provides a more sensible engineering solution

than building the capability of accessing and managing the information source

into every possible consumer agent.

3. One of the primary usages of information-speci�c agents is to make legacy

information sources available to the society of intelligent agents. Backward

compatibility in terms of taking advantage of data available in legacy data

sources is critical for the success of the agent-based approach. Di�erentiating

between interface agents, information-speci�c and task-speci�c agents o�ers

an abstraction tool enabling an incremental style of system building in which

system builders may want to focus on developing information-speci�c agents

�rst and then start to utilize the available information before implementing

other advanced decision-making components.

The crucial factors inuencing the determination of the type of an agent are:

(1) what are the functional and informational scopes of these types of agents in a

distributed architecture, (2) what kinds of interactions, coordination and activation

are predominant among these agents, and (3) what reusable agent components can

constitute agent structuring and what functionalities these components will support.

In the following subsections, we explore in detail the di�erent design commit-

ments with respect to interface agents, task agents and information agents along

various dimensions, such as their functionality, knowledge, coordination, interac-

tions, and reusable agent architecture.

2.1.1. Agent Functionality

The main functions of an interface agent include: (1) collecting relevant information

from the user to initiate a task, (2) presenting relevant information including results

and explanations, (3) asking the user for additional information during problem

solving, and (4) asking for user con�rmation, when necessary. From the user's

viewpoint, interacting only through a relevant interface agent for a task hides the



8 Coordination of Multiple Intelligent Software Agents

underlying distributed information gathering and problem solving complexity. For

example, the task of hosting a visitor in a university (see Section 5.1), one of the

tasks supported by our intelligent agents, involves more than 10 agents. However,

the user interacts directly only with the visitor hoster interface agent.

A task agent performs most of the autonomous problem solving. It exhibits a

higher level of sophistication and complexity than either an interface or an infor-

mation agent. A task agent (1) receives user delegated task speci�cations from an

interface agent, (2) interprets the speci�cations and extracts problem solving goals,

(3) forms plans to satisfy these goals, (4) identi�es information seeking subgoals

that are present in its plans, (5) decomposes the plans and coordinates with appro-

priate task agents or information agents for plan execution, monitoring, and results

composition.

An information-speci�c agent primarily provides intelligent information services.

The simpler of these services is one shot retrieval of information in response to a

query; a more enhanced information service is constant monitoring of available

information sources for the occurrence of prede�ned information patterns (e.g. ad-

dition of a new record in a data base). Traditional Data Base Management Systems

(DBMS) can be considered very simple forms of information agents. A more ad-

vanced form could be a DBMS with communication capabilities, using KQML, for

example. An even more advanced information agent can, in addition to commu-

nication with other agents, monitor its data base for the appearance of particular

patterns. The capability that makes a system a full edged information agent is its

additional ability to locate an information source and retrieve information (or mon-

itor for information patterns) from information sources that are detached from it,

i.e., the agent is used as an AI-enhanced gateway or wrapper to externally available

information sources. A related capability is locating other agents that can perform

some advertised service, i.e., provide yellow page services. Such agents have been

called facilitators by Genesereth12 . In our system, the notion of information agent

subsumes facilitators. By viewing facilitators as information agents, an interest-

ing new capability, not having been mentioned in the intelligent agents literature

so far is, pro-active monitoring for the appearance of new agents with particular

capabilities.

An advanced capability that can be added to all types of agents is learning. The

agents can retain useful information from their interactions as training examples and

utilize various machine learning techniques to adapt to new situations and improve

their performance 13;14.

2.1.2. Knowledge held by the Agents

In order to realize their functionality, the agents need pertinent knowledge in their

belief data base and algorithms that utilize the knowledge. In Section 3, we will

describe reusable agent components that store and process the knowledge.

An interface agent has the following knowledge: (1) a model of the user's goals

and preferences pertaining to a task, (2) knowledge of the relevant task assistants



International Journal of Cooperative Information Systems 9

that can perform the task, (3) knowledge of what must be displayed to the user

and in what way, (4) protocols for interacting with relevant task assistants. User

models and preferences could be automatically acquired 15;16.

A task agent has the following knowledge: (1) model of the task domain, (2)

knowledge for performing the task (e.g. query decomposition, sequencing of task

steps), (3) information gathering needs associated with the task model, (4) knowl-

edge about relevant task- or information-speci�c agents that it must coordinate

with in support of its particular task, (5) protocols that enable coordination with

the other relevant agents, and (6) strategies for conict resolution and information

fusion.

A typical information-speci�c agent knows: (1) model and associated meta-level

information of the data bases that it is associated with, such as size, average time it

takes to answer a query and monetary cost of query processing, (2) procedures for

accessing databases, (3) conict resolution and information fusion strategies, and

(4) protocols for coordination with other relevant software agents.

2.2. Agent Organization, Coordination and Interactions

In our distributed intelligent agent organization agents are directly activated based

on the top-down elaboration of the current situation. These agent activations dy-

namically form an organizational structure \on-demand" that �ts in with the task,

the user's information needs, and resulting decomposed information requests from

related software agents. This task-based organization may change over time (if, for

example, some task characteristics were to change for a given task), but will also re-

main relatively static for extended periods (for example, while monitoring currently

held investments during stable market periods). Notice that the agent organization

will not change as a result of appearance or disappearance of information sources

but the agent interactions could be a�ected by appearance (or disappearance) of

agents that are capable of ful�lling task subgoals in new ways. Information that is

important for decision-making (and thus might cause an eventual change in organi-

zational structuring) is monitored at the lowest levels of the organization and passed

upward when necessary. In this type of organization, task-speci�c agents continu-

ally interleave planning, scheduling, coordination, and the execution of domain-level

problem-solving actions.

This system organization has the following characteristics:

� There is a �nite number of task assistants that each agent communicates with.

� The information assistants are responsible for recognizing important informa-

tion, information �ltering, and checking information quality.

� The task assistants are responsible for resolving information conicts and

integrating information from heterogeneous information sources for their re-

spective tasks.



10 Coordination of Multiple Intelligent Software Agents

� The task assistants are responsible for activating relevant information assis-

tants and coordinating the information �nding and �ltering activity for their

task.

In our organization, the majority of interactions of interface agents are with the

human user, the most frequent interactions of information agents are with informa-

tion sources, whereas task agents spend most of their processing interacting with

other task agents and information agents. We briey describe the distributed coor-

dination processes in our multi-agent system (For an extended illustrative scenario,

see Section 5.1.1). When a task-speci�c agent receives a task from an interface agent

or from another task-speci�c agent, it decomposes the task based on the domain

knowledge it has and then delegates the subtasks to other task-speci�c agents or

directly to information-speci�c agents. The task-speci�c agent will take responsi-

bility for collecting data, resolving conicts, coordinating among the related agents

and �nally reporting to the interface agent which conveys the results to the user.

The agents who are responsible for assigned sub-tasks will either decompose these

sub-tasks further, or perform data retrieval (or possibly other domain-speci�c local

problem solving activities).

When information sources are partially replicated with varying degrees of re-

liability, cost and processing time, information agents must optimize information

source selection. If the chosen information sources fail to provide a useful answer,

the information agent should seek and try other sources to re-do the data query.

Because of these complexities, we view information retrieval as a planning task it-

self. The plans that task-speci�c agents have (see Section 3) include information

gathering goals, which, in turn are satis�ed through relevant plans for information

retrieval. A task-speci�c agent decomposes an information goal into subgoals that

are delegated to information agents. The information agents form plans to achieve

these goals, and proceed to execute and monitor them. A task-speci�c agent can

decide when to actively seek new information and, in turn, utilize retrieved infor-

mation for problem solving. This type of intelligent agent di�ers from traditional

AI systems since information-seeking during problem solving is an inherently built-

in part of the system. In e�ect, the planning and execution stages are interleaved

since the retrieved information may change the planner's view of the outside world

or alter the planner's inner belief system.

Information is �ltered and fused incrementally by information or task agents as

the goals and plans of the various tasks and subtasks dictate, before it is passed

on to other agents. This incremental information fusion and conict resolution

increases e�ciency and potential scalability (e.g. inconsistencies detected at the

information-assistant level may be resolved at that level and not propagated to the

task-assistant level) and robustness (e.g. whatever inconsistencies were not detected

during information assistant interaction can be detected at the task-assistant level).

A task agent can be said to be proactive in the sense that it actively generates

information seeking goals and in turn activates other relevant agents.

An information agent works di�erently. Its activities are initiated either top



International Journal of Cooperative Information Systems 11

down, by a user or a task agent through queries, or bottom up through monitoring

information sources for the occurrence of particular information patterns (e.g. a

particular stock price has exceeded a prede�ned threshold). Once the monitored

for condition has been observed, the information agent sends noti�cation messages

to agents that have registered interest in the occurrence of particular information

patterns (See Section 5.2). For example, in the �nancial domain, a human or

machine agent may be interested in being noti�ed every time a given stock price

has risen by 10%. Thus, information agents are active, in the sense that they

actively monitor information sources, rather than just waiting for and servicing

one-shot information queries.

Obviously, one of the major issues involved in multi-agent systems is the prob-

lem of interoperability and communication between the agents. In our framework,

we use the KQML language 17 for inter-agent communication. In order to incorpo-

rate and utilize pre-existing software agents or information services that have been

developed by others, we adopt the following strategy: If the agent is under our

control, it will be built using KQML as a communication language. If not, we build

a gateway agent that connects the legacy system to our agent and handles di�erent

communication channels, di�erent data and query formats, etc.

We have also implemented an advertisement mechanism and services registries

that can be accessed by task-speci�c agents to help determine availability and lo-

cation of desired information and services.

3. Agent Engineering: How To Structure An Agent?

As our point of departure in structuring an agent, we use the Task Control Ar-

chitecture (TCA) 18 which we extend and specialize for real-time user interaction,

information gathering, and decision support tasks in the Infosphere. The control

constructs available in TCA are used to integrate, coordinate, and monitor plan-

ning and plan execution, and to incrementally improve the e�ciency and robustness

of the multi-agent information system. These control constructs are part of the

reusable agent architecture. The overall architectural design of a TCA-based agent

is shown in Figure 2.

The planning module takes as input a set of goals and produces a plan that

satis�es the goals. The planning module of the task agents can be a full-edged

planner, whereas the planning module of the interface agents and the information

agents is much simpler consisting of retrieval and instantiation of plan templates. In

our initial implementation, the information agent planning component is a simple

plan retrieval mechanism that instantiates a new task structure for each goal. Thus

it is extremely fast but lacks exibility. Every plan step has an (optional) execution

deadline.

The key component of this architecture is a hierarchical representation of task-

/subtask relationships11, on which we rely heavily in our information software agent

architecture. This representation, called a task tree, has goals as non-terminal nodes,

and executable actions and execution monitoring mechanisms at the leaves. Tem-



12 Coordination of Multiple Intelligent Software Agents

Domain-Independent Control Constructs Domain-Specfic
Knowledge

Action

Scheduling

Resource

Allocation

Exception
Handling

Beliefs, Facts Base

Communication

Plan Retrieval

Execution
Monitoring

Task

Tree

Plan Library

Figure 2: Agent Architecture

poral constraints between nodes are used to schedule task planning and execution:

actions are queued until their temporal constraints are satis�ed. For example, a

sequential-achievement constraint between two nodes implies that all actions asso-

ciated under the �rst node must be handled before any of those under the second

node; whereas a parallel-achievement constraint allows that the actions under the

�rst node can be parallelly executed along with the actions under the second node.

This combination of hierarchical task decomposition and temporal constraints form

the agent's representation of plans. Either a �rst principle general planner or a

plan retrieval component plus domain-speci�c plan fragments can be used to gen-

erate plans. We adopt the plan retrieval approach in our implementation because

of e�ciency considerations.

We have extended the original TCA architecture with a communication module

that accepts and interprets messages from other agents in KQML. In addition,

interface agents also accept and interpret e-mail messages. We have found that e-

mail is a convenient medium of communicating with the user and/or other interface

agents (e.g. agents that provide event noti�cation services). Messages can contain

request for services. These requests become goals of the recipient agent.

The scheduling module schedules each of the plan steps. The agent scheduling

process in general takes as input the agent's current set of plan instances, in par-

ticular, the set of all executable actions, and decides which action, if any, is to be

executed next. This action is then identi�ed as a �xed intention until it is actually

carried out (by the execution component). Whereas for task agents, scheduling can

be very sophisticated, in our initial implementation of information agents, we use a



International Journal of Cooperative Information Systems 13

simple earliest-deadline-�rst schedule execution heuristic.

Agent reactivity considerations are handled by the execution monitoring and

exception handling processes. The agent execution monitoring process takes as

input the agent's next intended action and prepares, monitors, and completes its

execution. The execution monitor prepares an action for execution by setting up a

context (including the results of previous actions, etc.) for the action. It monitors

the action by optionally providing the associated computation limited resources|

e.g. the action may be allowed only a certain amount of time and if the action does

not complete before that time is up, the computation is interrupted and the action

is marked as having failed.

When an action is marked as failed, the exception handling process takes over

to replan from the current execution point to help the agent recover from the fail-

ure. For instance, when a certain external information source is out of service

temporarily, the agent who needs data from this information source shouldn't just

wait passively until the service is back. Instead, the agent might want to try an-

other information source or switch its attention to other tasks for a certain period

of time before returning to the original task. Mechanisms for reactivity in the agent

architecture provide a systematic and reusable way of engineering these uncertainty

handling mechanism into software agents. A simple example is a timeout mecha-

nism. Whenever an agent fails to retrieve the information of interest from a certain

source within a predetermined time limit, the agent will automatically invoke an

exception handling routine, which might invoke a replanning process or simply wait

for a particular time interval before re-trying accessing the information. Upon com-

pletion of an action, results are recorded, downstream actions are enabled if so

indicated, and statistics collected.

The agent's plan library contains skeletal plans and plan fragments that are

indexed by goals and can be retrieved and instantiated according to the current

input parameters. The retrieved and instantiated plan fragments are used to form

the agent's task tree that is incrementally executed.

The belief and facts data structures contain facts and other knowledge related

to the agent's functionality. For example, the belief structures of an interface agent

contain the user pro�le, and the belief structures of an information agent contain a

local data base that holds relevant records of external information sources the agent

is monitoring. Since an information agent does not have control of information

sources on the Internet, it must retrieve and store locally any information that it

must monitor. For example, suppose an information agent monitors the Security

APL, an Internet source that provides the New York Stock Exchange data, to satisfy

another agent's monitoring request, \notify me when the price of IBM exceeds $80".

The information agent must periodically retrieve the price of IBM from the Security

APL, bring it to its local data base and perform the appropriate comparison. For

information agents, the local data base is a major part of their reusable architecture.

It is this local database that allows all information agents to present a consistent

interface to other agents, and re-use behaviors, even in very di�erent information



14 Coordination of Multiple Intelligent Software Agents

environments 19.

An agent architecture may also contain components that are not reusable. For

example, the architecture of information agents contains a small amount of site-

speci�c external query interface code. The external query interface is responsible

for actually retrieving data from some external source or sources. The external

query interface takes as input a query and returns as output a set of complete

records. The local database internal to an information agent provides e�cient

query processing and retrieval and can be reused for any information source. This

allows the external query interface to be very small and simple, thus minimizing

the amount of site-speci�c code that must be written every time a new information

agent is built.

Since task tree management, plan retrieval, action scheduling, execution mon-

itoring, resource allocation, and exception handling are handled by the agent in a

domain-independent way, all these control constructs are reusable. Therefore the

development of a new agent is simpli�ed and involves the following steps:

� Build the domain-speci�c plan library

� Develop the domain-speci�c knowledge-base

� Instantiate the reusable agent control architecture using the domain-speci�c

plan library and knowledge-base

3.1. An Example of Agent Planning and Execution

We present an example of how the agent architecture is used in the control of one

of our task agents, called Personnel Finder, describing in detail how the task tree

models associated with Personnel Finder are generated (See Figure 3) and how

the control constructs operate on this tree. The basic functionality of Personnel

Finder is, given a person's name, �nding relevant personnel information, such as

title, phone number, o�ce number, etc. The current implementation of Personnel

Finder can access a variety of information sources that are either locally available

to the Carnegie Mellon community or are distributed over the Internet.

The Personnel Finder receives \Gathering Personnel Information" goal in mes-

sages coming from other software agents or from a user interface directly. Since

\Gathering Personnel Information" is not a terminal node (it is not directly exe-

cutable), the communication component forwards the \Gathering Personnel Infor-

mation" goal message to the plan retrieval component, queuing any other personnel

information gathering goals that might also have been received. Based on the goal

message and the associated parameters (e.g. a person's name), the plan retrieval

component �rst �nds the appropriate plan fragment from the plan library and then

instantiates this fragment using these parameters. Once the instantiation is done,

the plan retrieval component issues a \Select Information Sources" command, an

\Access Information Sources" sub-goal, a \Resolve Conicts" sub-goal, and an \In-

tegrate Resulting Information" sub-goal, and attaches them to the task tree. The



International Journal of Cooperative Information Systems 15

Gather Personnel

Information

Gather Personnel

Information

Parse

Finger

Data

Parse

Finger

Data

Select Information

Sources

Access Information

Sources

Resolve 
Conflicts

Integrating Resulting
Information

Access Who’s-Who 

Formulate

Finger

Queries

Access

Finger

Service

Access Finger

Formulate

Finger

Queries

Access

Finger

Service Service 

Access Finger

Access Room Database

Availability?

Service 

Availability?

Legends:

Monitor Command Goal Temporal

Constraint Task/Subtask

Figure 3: Task Tree for Personnel Finder



16 Coordination of Multiple Intelligent Software Agents

agent immediately executes the \Select Information Sources" since it is a terminal

node and readily executable. When this action completes, the communication com-

ponent sends the \Access Information Sources" goal message to the plan retrieval

component to get the instantiated plan fragment capable of accomplishing the in-

formation accessing goal. This goal message is also added to the task tree. Note

that the task tree always reects the current state of the plan and plan execution

and is updated incrementally.

After the plan retrieval component �nishes plan instantiation, it issues a \Access

Finger" sub-goal, a \Access Who's-Who" sub-goal, and a \Access RoomDatabase"

sub-goal. Besides the �nger utility for accessing a person's plan �le, Carnegie Mel-

lon University (CMU) has two data bases, the \Who's Who at CMU" which is part

of the electronic University Library system, and a database containing room and

telephone information for CMU employees. It should be noted that since there is no

sequential-achievement constraint existing among these sub-goals, they are being

handled concurrently. We will focus on the �rst one, \Access Finger". The other two

are handled in a similar way. Once again, the plan retrieval component is invoked

to decide what to do to accomplish this goal. As a result of plan instantiation, the

following nodes are added to the task tree: a \Formulate Finger Query" command

(The major functionality of \Formulate Finger Query" is to compose heuristically

the email address given the name and a�liation of a given person), a \Access Finger

Service" command, a monitor to ensure that the �nger action has been carried out

properly, and a \Parse Finger Data" command. In turn, these actions are carried

out and the monitoring condition is checked. If the �nger action reports a failure,

an exception is raised and the plan retrieval component is invoked to replan from

the current position. As a result of replanning, the \Formulate Finger Query" may

try a di�erent email address. If everything goes well, after all \Access Finger",

\Access Who's-Who", and \Access Room Database" �nish, the agent continues

similar plan retrieval-execution-execution monitoring cycles for \Resolve Conicts"

and \Integrate Resulting Information" subgoals. After this particular instance of

\Gathering Personnel Information" completes, the agent waits for the next \Gath-

ering Personnel Information" cycle. Since the control mechanism is able to monitor

the time spent for tasks/subtasks and the depth of the task tree, it is fairly easy to

constraint the computational resources dedicated to certain tasks either by enforc-

ing an absolute timeout constraint or limiting the number of retries. For example,

it is possible to abort the \Access Finger" if not completed in, for example, �ve

minutes or to stop accessing \Access Who's-Who" after three tries.

4. Related Work

Recent work in Distributed AI has demonstrated the usefulness of DAI techniques

for cooperative plan recognition among geographically distributed sensor agents 20,

distributed decision making by a team of specialists 21 and distributed search 22;23.

Additional DAI research includes problem decomposition and task allocation to a

network of agents 24, distributed control 25, distributed planning 20, agent orga-



International Journal of Cooperative Information Systems 17

nization 26, and negotiation 27;28. More recently, the currently small but rapidly

growing research community on Intelligent Agents has to-date focused on interest-

ing and important issues, such as interfacing these agents with users 15;5, issues of

agent trustworthiness 7, user acceptability 29, characteristics of agenthood 9, agent

architecture and organization 30;12, and information retrieval from Internet-based

resources 9;31;32. Di�erent control architectures have also been explored for intel-

ligent software agents. For example, a centralized control architecture has been

developed for performing useful UNIX �le management tasks 33. Although these

so-called \SoftBot", or \UserBot", or \Personal Assistant" share many character-

istics with our task-speci�c agents, our underlying infrastructure is fundamentally

di�erent from theirs since we assume and take advantage of a distributive and col-

laborative operating environment.

The BDI (belief-desire-intention) architecture developed by Rao and George�
34;2 is a logical framework for agent theory based on a branching model of time.

They also implemented a system based on the BDI architecture, called the Proce-

dural Reasoning System (PRS) 35. Shoham proposed agent-oriented programming

paradigm and developed a prototypic language AGENT0 3. Pollack et. al. ad-

dressed the issue of bridging the gap between formalizations of BDI architectures

and system implementations 36. Brazier et. al. developed a framework called DE-

SIRE 37 in which they modeled task hierarchy, allocation, and control along the

same lines as our work. Jennings et. al. discussed the issues with development

of intelligent multi-agent systems in real world settings 38. Our work di�ers from

the above-mentioned agent frameworks mainly in two aspects: (1) our system is

aimed at truly multi-agent environments reected by the fact that the agents in

our system model other relevant agents explicitly, and (2) we instantiate the gen-

eral agent architecture by di�erentiating between interface, task, and information

agents for structuring real time systems that operate e�ciently for real complex

tasks involving coordination, information gathering and user interaction.

5. Application Domains

We have implemented distributed cooperating intelligent agents using the concepts,

architecture, and reusable components we have described in a variety of application

domains: everyday organizational decision making, �nancial portfolio management,

emergency health care and electronic commerce. In this section, we describe in

detail the �rst application, illustrate the functioning of the distributed, cooperative

Intelligent Agents through an extended scenario and give brief descriptions of the

remaining application domains.

5.1. Everyday Organizational Decision Making

In performing everyday routine tasks, people spend much time in �nding, �ltering,

and processing information. Delegating some of the information processing to Intel-

ligent Agents could increase human productivity and reduce cognitive load. To this



18 Coordination of Multiple Intelligent Software Agents

end, recent research has produced agents for e-mail �ltering 7, calendar management
15, and �ltering news 5. These tasks involve a single user interacting with a single

software agent. There are tasks, however, which have more complex information re-

quirements and possible interaction among many users. A distributed, multi-agent

collection of Intelligent Agents is then appropriate and necessary. Within the con-

text of our PLEIADES project, we have applied our distributed agent architecture

to such multi user tasks of increased complexity, such as distributed, collaborative

meeting scheduling among multiple human attendees 39, �nding people informa-

tion on the Internet, hosting a visitor to Carnegie Mellon University 6, accessing

and �ltering information about conference announcements and requests for propos-

als (RFPs) from funding organizations and notifying Computer Science faculty of

RFPs that suit their research interests 13.

5.1.1. An Extended Example: The Visitor Hosting Task

We will use the task of hosting a visitor to Carnegie Mellon University (CMU) as an

illustrative example of system operation. Hosting a visitor involves arranging the

visitor's schedule with faculty whose research interests match the interests that the

visitor has expressed in his/her visit request. A di�erent variation of the hosting

visitor task has been explored by Kautz and his colleagues at Bell Labs 30.

Our system consisting of a collection of agents, collectively referred to as Visitor

Hosting system (see Figure 4), supports the visitor hosting task. Carnegie Mellon

University has many requests for visits every year from academic, industrial and

government personnel. Currently, an administrative sta� person is responsible for

receiving the visit requests and creating the visitor's schedule in coordination with

CMU faculty and students that match the visitor's area of interest, and are willing

and free to meet with him/her. Even in today's world of electronic mail, making

arrangements for a person's visit is a time consuming task and would bene�t from

support by intelligent agents technology.

The Visitor Hosting system takes as input a visit request, the tentative requested

days for the meeting and the research interests of the visitor. Its �nal output is a

detailed schedule for the visitor consisting of meeting time, location, and name of

attendees. Attendees in these meetings are faculty members whose interests match

the ones expressed in the visitor's request and who have been automatically con-

tacted by the agents in the Visitor Hosting system and have agreed to meet with the

visitor at times convenient for them. The Visitor Hosting system has an interface

agent, which interacts with the person who is hosting the visit. The Visitor Hoster

task agent forms plans for achieving the visitor hosting goal and coordinates with

appropriate software agents for plan execution, monitoring, and results composition.

The system also has the following task agents: (1) a Personnel Finder task agent,

who �nds detailed information about the visitor, and also �nds detailed information

about CMU faculty for better matching the visitor and the faculty he/she meets,

(2) the visitor's Scheduling task agent and (3) various personal calendar manage-

ment task agents that manage calendars of various faculty members. In addition,



International Journal of Cooperative Information Systems 19

User

Interests Agent

Interface Agent

Interests

Research

Visitor Hoster

User

Visitor 

Scheduler

Personnel
Finder

Calendar Agent
     CAP

Finger

Who’s-Who

CMU

Room Database

CMU Library

Finger
Agent Agent Agent

Who’s-Who Room

Legends

Task Agent Information Agent Data SourceInterface Agent

Figure 4: Visitor Hosting System



20 Coordination of Multiple Intelligent Software Agents

the Visitor Hosting system has a number of information agents that (1) retrieve

information from a CMU data base that has faculty research interests (Research

Interests agent), and (2) retrieve personnel and location information from various

university data bases.

We present a detailed visitor hosting scenario to illustrate the interactions of

the various agents in the Visitor Hosting task.

� The user inputs a visitor request to the Interface agent for the visitor hosting

task.

Suppose Marvin Minsky wants to visit CMU CS department. Minsky has

requested that he would prefer to meet with CMU faculty interested in ma-

chine learning. The user inputs relevant information about Minsky, such as

�rst name, last name, a�liated organization, date and duration of his visit,

and his preference as to the interests of faculty he wants to meet with, to the

Interface agent.

� The communicationmodule of the Interface agent processes the visitor request

and extracts the visitor's areas of interest, name, and organization and sends

them to the Visitor Hoster task agent.

� The planner module of the Visitor Hoster agent formulates a goal (\meet with

faculty of same research interests"), and instantiates it with \research-interests

= machine learning". This goal has the two subgoals, \collect contact infor-

mation" and \produce visitor's schedule". The plan operators for collecting

contact information are \access-X?" where X? corresponds to known infor-

mation agents or task agents. The preconditions of \access-X?" are the input

required for accessing agent X? and postconditions are retrievable informa-

tion and results that the contacted agent can generate. The planner module

produces a plan for \collect contact information" through means ends analy-

sis and executes ita. The plan steps are \access Interests-Agent", followed by

\access Personnel-Finder". The Visitor Hoster scheduling module schedules

the �rst step for execution. In executing the �rst plan step, the communica-

tion module formulates a KQML message to the Interests agent conveying the

visitor's areas of interest and asks it to �nd faculty members whose interest

areas match the request.

(ask

:language simple-query

:ontology research-interest

:receiver Interests-agent

:sender Visitor-Hoster-agent

aThe results of planning, e.g. the information gathering plans, can be cached in an agent's plan

library and reused. This results in greater computational e�ciency but is not exible enough to

handle all possible situations.



International Journal of Cooperative Information Systems 21

:in-reply-to visitor-hoster-query-interest-agent-103

:content (query

(research-interest "machine learning")))

� The Interests agent queries the faculty interests data base and returns names

of CMU faculty whose research matches "machine-learning".

Using \machine learning" as the keyword to search through faculty interests

database, the Interests agent �nds a list of faculty whose interest areas match

machine learning, shown in the following message:

(tell

:language simple-query

:ontology research-interest

:receiver Visitor-Hoster-agent

:sender Interests-agent

:in-reply-to visitor-hoster-query-interest-agent-103

:content (respond

(

((first-name "Tom") (last-name "Mitchell"))

((first-name "Andrew ") (last-name "Moore"))

((first-name "Jack ") (last-name "Mostow"))

((first-name "Herbert") (last-name "Simon"))

((first-name "Katia ") (last-name "Sycara"))

((first-name "Manuela") (last-name "Veloso"))

...

)))

� After the faculty names have been communicated to the Visitor Hoster by

the Interests agent, the execution of the �rst plan step is complete and the

Visitor Hoster executes the second step of the \collect contact information"

plan, namely \access Personnel-Finder".

For example, to �nd information about TomMitchell, the Visitor Hoster agent

sends the following message to the Personnel Finder agent:

(ask

:language simple-query

:ontology personnel-information

:receiver Personnel-Finder-agent

:sender Visitor-Hoster-agent

:in-reply-to visitor-hoster-personnel-finder-agent-201

:content (query

(first-name "Tom")

(last-name "Mitchell")



22 Coordination of Multiple Intelligent Software Agents

(organization "CMU")

(organization-type "EDU")))

� The communication module of the Personnel Finder processes this message

and formulates the planning goal \gather personnel information" that gets

planned for and executed as shown in Figure 3. The Personnel Finder sub-

mits queries to three personnel data bases (finger, CMU Who's-Who, CMU

RoomDatabase), at CMU to �nd more detailed information about the faculty

member (e.g., rank, telephone number, e-mail address), resolves ambiguities

in the returned information, and integrates results.

In order to �nd the personnel information about Tom Mitchell at CMU, the

Personnel Finder agent spawns multiple queries collecting information from

various information sources in parallel. After responses from these sources get

collected, the Personnel Finder agent tries to resolve conicts.

Sources:      Personnel Info for Tom Mitchell

Info-Attribute-Name Who-is-Who Room-Database Finger

     department

     position

         office

           email

       secretary

    research

Figure 5: Information Sources and Returned Items

Figure 5 shows in detail the information sources used for querying personnel

information about Tom Mitchell and the information attributes returned by

these sources. The columns correspond to di�erent information sources. The

rows are the attributes of personnel information that can be obtained from

the sources. The checker and cross marks indicate which information sources

return answers for which attributes. From Figure 5, we observe that for some

information attributes (e.g. o�ce room number), more than one information

source (Room Database and finger) o�er answers, which may be potentially

conicting. To resolve this conict, the Personnel Finder applies one of the

rules kept in its domain-speci�c knowledge base saying that the o�ce infor-

mation based on Room Database is always more relevant and up-to-date than



International Journal of Cooperative Information Systems 23

other sources. In this case, the value as to o�ce room number returned by

finger is overruled by the one returned by Room Database. The cross mark

in the \O�ce" row and \CS-FINGER" column means that although finger

�nds the o�ce information, the retrieved value is overruled by another infor-

mation source (Room Database). In this case, the value returned by Room

Database is considered as the correct o�ce information, indicated in the �gure

by a checker mark in the \O�ce" row and \SCS-ROOM" column.

� Now the Visitor Hoster expands the \produce visitor's schedule" subgoal. The

�rst plan step for this subgoal is \contact meeting candidates". Based on the

information returned by the Personnel Finder, the Visitor Hoster agent selects

an initial set of faculty to be contacted.

� The Visitor Hoster agent automatically composes messages to the calendar

assistant agents of the selected faculty asking whether they are willing to meet

with the visitor and at what time. For those faculty that do not have machine

calendar agents, e-mail is automatically composed and sent. A sample e-mail

message is shown as follows:

To: tom.mitchell@cs.cmu.edu

Subject: Would you like to meet with Marvin Minsky?

A visit is being organized as follows:

[Visitor] (marvin minsky)

[Institution] MIT

[Date] 02/15/1996

Please reply to this message, indicating whether you would like

to meet individually for 60 minutes with Marvin Minsky during

his visit.

He is available during the following times:

[Available Meeting Times] 02/15/1996: 9:00-17:00

Would you like a meeting?

Thank you,

The Visitor Hoster agent

� The communication module of Mitchell's calendar management agent CAP15

processes the received message. In order to decide whether Mithcell would be

interested in meeting with a visitor, CAP's planner needs additional informa-

tion about the visitor (e.g. rank in the organization, work title, etc.). CAP



24 Coordination of Multiple Intelligent Software Agents

knows that the Personnel Finder can provide such information, so it asks for

this additional information.

To collect more information about Minsky, CAP contacts the Personnel Finder

agent by sending the following KQML message which contains the search

keywords such as the name and organization of the visitor:

(ask

:language simple-query

:ontology personnel-information

:receiver Personnel-Finder-agent

:sender CAP

:in-reply-to CAP-personnel-finder-agent-188

:content (query

(first-name "Marvin")

(last-name "Minsky")

(organization "MIT")

(organization-type "EDU")))

� The Personnel Finder agent accesses Internet resources to �nd more detailed

information about the visitor.

When the Personnel Finder agent receives the query KQML message from the

CAP agent, the �rst thing it needs to decide is what information sources to

contact based on the a�liated organization information. For instance, if the

interested person is a CMU professor, there are the Finger service available

plus two other databases which can be accessed only internally at CMU, in-

cluding a CS Room Database and a CMU on-line library Who's-Who . If the

interested person is associated with other institutes, only the Finger service is

available. Since Minsky comes from MIT, the Personnel Finder accesses the

Finger service and heuristically parses the returned information by finger.

As a result, the following message is sent back to the Visitor Hoster agent as

the response to the query:

(tell

:language simple-query

:ontology personnel-information

:receiver CAP

:sender Personnel-Finder-agent

:in-reply-to CAP-personnel-finder-agent-188

:content (respond

(first-name "Marvin")

(last-name "Minsky")

(organization "MIT")

(organization-type "EDU")



International Journal of Cooperative Information Systems 25

(email "MINSKY@MEDIA.MIT.EDU")

(phone "(617) 253-5864")

(office "E15-486")

(department "Elec Eng & Comp Sci")

(title

"Toshiba Professor Of Media Arts And Sciences")

))

� Having received the information about the visitor from the Personnel Finder,

CAP formulates a response to the Visitor Hoster.

CAP tells the Visitor Hoster that Mitchell is willing to meet with Minsky

10am-11am.

� The Visitor Hoster agent collects responses from all calendar agents and passes

them to the visitor's Scheduling agent.

� The visitor's Scheduling agent composes the visitor's schedule through subse-

quent interaction and negotiation of scheduling conicts with the attendees'

calendar management agents39. The �nal calendar is shown in Figure 6.

Figure 6: Final Schedule of Minsky's Visit

The Visitor Hosting system has many capabilities. It automates information re-

trievals in terms of �nding personnel information of potential appropriate meeting



26 Coordination of Multiple Intelligent Software Agents

attendees. It accesses various on-line public databases and information resources at

the disposal of the visit organizer. It integrates the results obtained from various

databases, clari�es ambiguities (e.g. the same entity can be referred by di�er-

ent names in di�erent partially replicated data bases), and resolves the conicts

which might arise from inconsistency between information resources. It creates

and manages the visitor's schedule as well as the meeting locations for the various

appointments with the faculty members (e.g. a faculty's o�ce, a seminar room).

It interacts with the user, getting user input, con�rmation or dis-con�rmation of

suggestions, asking for user advice, and advising the user of the state of the system

and its progress.

5.2. Financial Portfolio Management

We have recently started developing a multi agent system, called WARREN INC

(Web Agents for Retrieval of Reliable Economic News for INvestment Counseling)
b, for information gathering over Internet-based services in support of managing

�nancial investments. In current practice, portfolio management is carried out

by investment houses that employ teams of specialists for �nding, �ltering and

evaluating relevant information. Based on their evaluation and on predictions of

the economic future, the specialists make suggestions about buying or selling various

�nancial instruments, such as stocks, bonds, mutual funds etc. The overall task in

the portfolio management domain, as stated by modern portfolio theory 40, is to

provide the best possible rate of return for a speci�ed level of risk, or conversely, to

achieve a speci�ed rate of return with the lowest possible risk. Risk tolerance is one

of the features that characterize the user of our system; other features include the

user's investment goals (long-term retirement savings? saving for a house?) and

the user's tax situation.

Current practice as well as software engineering considerations motivate our

multi agent system architecture. A multi-agent system approach is natural for

portfolio monitoring because the multiple threads of control are a natural match

for the distributed and ever-changing nature of the underlying sources of data and

news that a�ect higher-level decision-making processes. A multi-agent system can

more easily manage the detection and response to important time-critical informa-

tion that could appear suddenly at any of a large number of di�erent information

sources. Finally, a multi-agent system provides a natural mapping of multiple types

of expertise that need to be integrated and be brought to bear during any portfolio

management decision-making.

The overall portfolio management task has several component tasks. These

include eliciting (or learning) user pro�le information, collecting information on the

user's initial portfolio position, and suggesting and monitoring a re-allocation to

meet the user's current pro�le and investment goals. As time passes, assets in the

portfolio will no longer meet the user's needs (and these needs may also be changing

bThe system is named after Warren Bu�et, a famous American investor and author about invest-

ment strategies.



International Journal of Cooperative Information Systems 27

as well). Our initial system focuses on the ongoing portfolio monitoring process.

We briey describe the main agents in the portfolio management task. The port-

folio manager agent is an interface agent that interacts graphically and textually

with the user to acquire information about the user's pro�le and goals. The fun-

damental analysis agent is a task assistant that acquires and interprets information

about a stock from the viewpoint of a stock's (fundamental) \value". Calculat-

ing fundamental value takes into consideration information such as a company's

�nances, forecasts of sales, earnings, expansion plans etc. The Technical Analy-

sis agent uses numerical techniques such as moving averages, curve �tting, complex

stochastic models, neural nets, to try to predict the near future in the stock market.

The Breaking News agent tracks and �lters news stories and decides if they are so

important that the user needs to know about them immediately, in that the stock

price may be immediately a�ected. The Analyst Tracking agent tries to gather in-

telligence about what human analysts are thinking about a company. These agents

gather information through information requests to information agents. The infor-

mation agents that we have currently implemented are the Stock Tracker agents

that monitors stock reporting Internet sources, such as the Security APL, and the

News Tracking agents that track and �lter Usenet relevant �nancial news articles

(including CMU's Clarinet and Dow Jones news feeds). The information retrieved

by these information agents is passed to the task assistants and used in making

recommendations to the user about hold, buy or sell decisions.

5.3. Emergency Medical Care

Rapid and accurate access to patient information, in particular current and past

medications that a patient is taking, as well as allergy information are very im-

portant for treatment in medical emergencies. This information is currently either

completely unavailable to the emergency physician (e.g. a patient who lives in

Pittsburgh has had a car accident in Los Angeles and is brought unconscious into

an emergency room there), or is obtained very laboriously through getting in touch

with the patient's primary physician and/or hospital facilities where the patient has

been previously treated.

We are working with a consortium of companies to develop information services

for Emergency Medical Care in both civilian and military settings. The consortium

is developing (1) speci�cations and procedures for capturing data that is useful for

emergency medicine, (2) speci�cations and implementation of schemes for storing

the captured data in regional repositories, and (3) an overall system architecture

that allows secure data access on a nationwide basis. Within the consortium, CMU

is developing Intelligent Agents that

� interoperate with current hospital legacy systems over Wide Area Networks

to gather, integrate and �lter emergency medicine information to be brought

at the right time to the right user (e.g. emergency physician, nurse)

� locate patient emergency data from regional data repositories by making e�-



28 Coordination of Multiple Intelligent Software Agents

cient nationwide searches, possibly with incomplete information (e.g. patient's

health insurance card has been destroyed in an auto accident)

� respect security procedures and patient con�dential information

� provide decision support to the healthcare provider

� monitor and notify the user of pertinent events (e.g. test results that were

ordered in the emergency department are available for the physician's evalu-

ation)

5.4. Electronic Commerce

In the area of electronic commerce, we are developing agents that buy and sell

engineering products on the Internet. In this project, we are collaborating with

IndustryNet, a company that provides on-line catalogs of engineering products on

the Internet. Currently, there are 120,000 products represented on IndustryNet.

IndustryNet 41 is a design and manufacturing service on the Internet that helps

engineers locate product and service information. It represents a \live" working

industrial MarketPlace where new electronic commerce ideas can be tested. The

collection of agents that we are developing locate speci�ed products in on-line cat-

alogs, select the appropriate set of products that best meet the speci�cations and

negotiate product acquisition and delivery.

Negotiating an agreement involves �nding a compromise solution for multiple

conicting goals. This is a complicated problem, not amenable to traditional AI

planning techniques 27. The negotiation process itself is a search of a dynamic

problem space where an agent's beliefs about another agent's beliefs over the cycle

of proposals continuously changes the space being searched. What was not a solution

at one point becomes a solution at a later point. In labor negotiations, for example,

it is unlikely that either party would accept their eventual compromise, if it were

presented at the inception of negotiations.

The process of negotiation starts with an expectation level and utility function

for both parties of the negotiation. These expectation levels are relaxed through

the process of negotiation. Agents will operate with criteria such as: (1) delivery

time, (2) volume discounts, (3) promise of future business, (4) history of previous

business, (5) early payment discounts, and (6) discounts for purchase of collateral

goods. The rate at which relaxation is applied depends on each agent's utility on

time to purchase and urgency to produce cash ow. We have developed an agent-

to-agent protocol for making proposals and counter-proposals in order to reach a

negotiated agreement.

In addition, we are using our information agent architecture to develop agents

that monitor certain locations on the Internet and notify the originator when a

change occurs that is of interest to the user. The changes of signi�cance in elec-

tronic commerce of engineering products concern the appearance of new products

of interest to the user. For example, if a designer is unable to �nd a part to suit



International Journal of Cooperative Information Systems 29

his stringent speci�cations, he may tell the monitoring agent to keep looking out

over the Internet every other week. Currently, IndustryNet has \interests pro�les"

of what kinds of products its users are interested in. The monitoring agents can

utilize these interests pro�les to automatically monitor and notify users for the

appearance of products that match their interests.

6. Conclusions

In this paper, we have described concepts and techniques for structuring and orga-

nizing distributed collections of intelligent software agents in a reusable way. We

presented the various agent types that we believe are necessary for supporting and

seamlessly integrating information gathering from distributed internet-based infor-

mation sources and decision support, including (1) Interface agents which interact

with the user receiving user speci�cations and delivering results, (2) Task agents

which help users perform tasks by formulating problem solving plans and carrying

out these plans through querying and exchanging information with other software

agents, and (3) Information agents which provide intelligent access to a heteroge-

neous collection of information sources. We have also described and illustrated our

implemented, distributed system of such collaborating agents. We believe that such

exible distributed architectures, consisting of reusable agent components, will be

able to answer many of the challenges that face users as a result of the availability

of the new, vast, net-based information environment. These challenges include lo-

cating, accessing, �ltering and integrating information from disparate information

sources, monitoring the Infosphere and notifying the user or an appropriate agent

about events of particular interest in performing the user-designated tasks, and

incorporating retrieved information into decision support tasks.

We are applying the distributed agent architecture in a variety of complex

real world domains, such as organizational decision making, investment counsel-

ing, health care and electronic commerce. We have briey presented examples of

intelligent agent use from these application domains. We are currently extending the

capabilities of our agents to include (1) learning strategies for resolving information

conicts and (2) learning capabilities and reliability of inter-operating agents.

Acknowledgements

This research has been sponsored in part by ONR Grant #N00014-95-1-1092, by

ARPA Grant #F33615-93-1-1330, and by NSF Grant #IRI-9508191. We want to

thank Tom Mitchell, Dana Freitag, Sean Slittery, David Zabowski, Keith Decker,

Anadeep Pannu, and other members of the PLEIADES project for interesting dis-

cussions. We also want to thank Gilad Amiri and Anandeep Pannu for doing much

of the implementation.

References

1. P. R. Cohen and H. J. Levesque. Intention=choice + commitment. In Proceedings of



30 Coordination of Multiple Intelligent Software Agents

AAAI-87, pages 410{415, Seattle, WA., 1987. AAAI.
2. Anand S. Rao and Michael P. George�. A model-theoretic approach to the veri�cation

of situated reasoning systems. In Proceedings of IJCAI-93, pages 318{324, Chambery,
France, 28 August - 3 September 1993. IJCAI.

3. Y. Shoham. Agent-oriented programming. Arti�cial Intelligence, 60(1):51{92, 1993.
4. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The

Knowledge Engineering Review, 10(2):115{152, 1995.
5. Kan Lang. Newsweeder: Learning to �lter netnews. In Proceedings of Machine Learn-

ing Conference, 1995.
6. Katia Sycara and Dajun Zeng. Towards an intelligent electronic secretary. In Pro-

ceedings of the CIKM-94 Workshop on Intelligent Information Agents, National
Institute of Standards and Technology, Gaithersburg, Maryland, December 1994.

7. Pattie Maes. Agents that reduce work and information overload. Communications of
the ACM, 37(7), July 1994.

8. Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David Zabowski.
Experience with a learning personal assistant. Communications of the ACM, 37(7),
July 1994.

9. Oren Etzioni and Daniel Weld. A softbot-based interface to the internet. Communi-
cations of the ACM, 37(7), July 1994.

10. Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative information
gathering: A distributed problem solving approach. Technical Report 94-66, Depart-
ment of Computer Science, University of Massachusetts, September 1994.

11. Reid Simmons. Structured control for autonomous robots. IEEE Journal of Robotics
and Automation, 1994.

12. M. R. Genesereth and S. P. Katchpel. Software agents. Communications of the ACM,
37(7):48{53,147, 1994.

13. Anandeep Pannu and Katia Sycara. Learning text �ltering preferences. In 1996 AAAI
Symposium on Machine Learning and Information Access, 1996.

14. Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. In 1996 AAAI
Symposium on Adaptation, Co-evolution and Learning in Multiagent Systems,
1996.

15. Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David Zabowski. A
personal learning apprentice. In Proceedings of the Tenth National Conference on
Arti�cial Intelligence. AAAI, 1992.

16. Katia Sycara and Kazuo Miyashita. Case-based acquisition of user preferences for
solution improvement in ill-structured domains. In Proceedings of AAAI-94, Seattle,
Washington, August 1994. AAAI.

17. Tim Finin, Rich Fritzson, and Don McKay. A language and protocol to support intel-
ligent agent interoperability. In Proceedings of the CE and CALS Washington 92
Conference, June 1992.

18. R. Simmons. A theory of debugging plans and interpretations. In Proceedings of The
seventh national conference of Arti�cial Intelligence, St. Paul, Min., 1988.

19. Keith Decker and Katia Sycara. Designing reusable behaviors for information agents.
Technical report, The Robotics Institute, Carnegie Mellon University, Pittsburgh,
U.S.A., 1996.

20. E. H. Durfee. A Uni�ed Approach to Dynamic Coordination: Plannign Actions
and Interactions in a Distributed Problem Solving Network. PhD thesis, COINS,
University of Massachusetts, Amherst, MA., 1987.

21. S. Lander and V. Lesser. Negotiation to resolve conicts among design experts. In
Proceedings of the AAAI-88 Workshop on AI in Design, St. Paul, MN., 1988.
AAAI.



International Journal of Cooperative Information Systems 31

22. K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed constrained heuristic search.
IEEE Transactions on System, Man and Cybernetics, 21(6):1446{1461, 1991.

23. Sandip Sen and Edmund H. Durfee. The e�ects of search bias on exibility in distributed
scheduling. In Proceedings of the Twelfth International Workshop on DAI, 1993.

24. R. Davis and R. G. Smith. Negotiation as a metaphor for distributed problem solving.
Arti�cial Intelligence, 20:63{100, 1983.

25. Daniel D. Corkill and Victor R. Lesser. The use of meta-level control for coordination
in a distributed problem solving network. In Proceedings of the Eighth International
Joint Conference on Arti�cial Intelligence, pages 748{755, Karlsruhe, Germany,
August 1983.

26. T. Ishida, M. Yokoo, and L. Gasser. An organizational approach to adaptive production
systems. In Proceedings of AAAI-90, Boston, Mass., 1990.

27. K. Sycara. Negotiation planning: An AI approach. European Journal of Operational
Research, 46:216{234, 1990.

28. Rosenschein J. and G. Zlotkin. Rules of Encounter. MIT Press, Cambridge, Mass.,
1994.

29. Donald A. Norman. How might people interact with agents. Communications of the
ACM, 37(7), July 1994.

30. Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up design of software agents.
Communications of the ACM, 37(7), July 1994.

31. Y. Arens, C. Y. Chee, C.-N. Hsu, and C. A. Knoblock. Retrieving and integrating
data from multiple information sources. International Journal of Intelligent and
Cooperative Information Systems, 2(2):127{58, June 1993.

32. Robert Armstrong, Dayne Freitag, Thorsten Joachims, and TomMitchell. Webwatcher:
A learning apprentice for the world wide web. In Craig Knoblock and Alon Levy, editors,
Working Notes of the AAAI Spring Symposium Series on Information Gathering
from Distributed, Heterogeneous Environments, Stanford, CA, March 1995. AAAI.

33. O. Etzioni, K. Golden, and D. Weld. Tractable closed-world reasoning with updates. In
Proceedings of the Fourth International Conference on Principles of Knowledge
Representation and Reasoning, 1994.

34. A. S. Rao and M. P. George�. Modeling rational agents within a BDI-architecture. In
Proceedings of Knowledge Representation and Reasoning, pages 473{484, 1991.

35. Anand S. Rao and Michael P. George�. An abstract architecture for rational agents.
In Proceedings of the Third Intenatinal Conference on Principles of Knowledge
Representation and Reasoning (KR '92), pages 439{449, Cambridge, Massachusetts,
October 23-29 1992.

36. M. E. Pollack, D. J. Israel, and M. E. Bratman. Towards an architecture for resource-
bounded agents. Technical Report 425, SRI International, 1987.

37. F. Brazier, B. D. Keplicz, N. R. Jennings, and J. Treur. Formal speci�cation of multi-
agent systems: a real-world case. In First International Conference on Multi-Agent
Systems (ICMAS'95), pages 25{32, San Francisco, CA., June 12-14 1995.

38. N. R. Jennings, J. M. Corera, and I. Laresgoiti. Developing industrial multi-agent
systems. In First International Conference on Multi-Agent Systems (ICMAS'95),
pages 423{430, San Francisco, CA., June 12-14 1995.

39. JyiShane Liu and Katia Sycara. Distributed meeting scheduling. In Proceedings of the
Sixteenth Annual Conference of the Cognitive Science Society, Atlanta, Georgia,
August 13-16 1994.

40. H. Markowitz. Portfolio selection: e�cient diversi�cation of investments. B. Black-
well, Cambridge, MA, second edition, 1991.

41. Donald Jones and D. Navin-Chandra. Industrynet: A model of commerce on the World
Wide Web. IEEE Expert, pages 54{59, October 1995.


