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ABSTRACT

With a focus on presenting information at the right time, the
ubicomp community can benefit greatly from learning the
most salient human measures of cognitive load. Cognitive
load can be used as a metric to determine when or whether
to interrupt a user. In this paper, we collected data from
multiple sensors and compared their ability to assess
cognitive load. Our focus is on visual perception and
cognitive speed-focused tasks that leverage cognitive
abilities common in ubicomp applications. We found that
across all participants, the electrocardiogram median
absolute deviation and median heat flux measurements
were the most accurate at distinguishing between low and
high levels of cognitive load, providing a classification
accuracy of over 80% when used together. Our contribution
is a real-time, objective, and generalizable method for
assessing cognitive load in cognitive tasks commonly found
in ubicomp systems and situations of divided attention.
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INTRODUCTION
Advances in computer technologies have improved
people’s multi-tasking performance. However, human

attention is a finite resource [44] and the benefit of being
able to process multiple streams of information comes with
a cost. Cognitive demands and limitations will ebb and flow
in situations of divided attention, due to an interruption of a
primary task, or engaging in dual- (or multi)-tasking,
making the prediction of when information can be attended
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to particularly hard. For example, in the context of an
interruption, attention switches from one task to another,
whether the interruption is relevant or a distraction.
Consider, for example, a navigation display that is deemed
useful, annoying, or even dangerous as it continually
delivers information to the driver, or attending to an
information stream on a mobile device while walking,
driving, or listening to a lecture.

The ubicomp community can benefit greatly from learning
the most salient human measures of cognitive load. Such an
understanding can help designers and developers gauge
when and how to best communicate information,
particularly with the focus in ubicomp on proactively and
seamlessly providing the right information at the right time.
Presenting information at the wrong time can drastically
increase one’s cognitive demands, can have negative
impacts on task performance and emotional state, and in
extreme cases, even be life threatening [26, 45].
Additionally, how information is designed and presented
can help or hinder our ability to resume a task that has been
interrupted, and to provide more information about the
context of interruption [14, 24, 35].

While research advances have been made in sensing context
to determine when an individual is interruptible, or on
monitoring the interaction between human and interrupter
to understand the cost of interruption [19, 20, 26], much
more needs to be understood about how cognitive load
factors into contexts of multitasking and interruption.
Determining both what the right information is and when
the right moment to present it are still open problems in
ubicomp research. The reason may be the lack of
generalized methods for detecting a user’s cognitive load
fluctuation. However, it could also be the case that ubicomp
solutions aim for the most minimal types of interventions,
with the goal of interrupting users for shorter periods of
time, resulting in a greater number of attention switches.
Regardless, what is still needed is a mechanism that
monitors a person’s internal state as shaped by task or tasks,
interruption, and aspects of context. However, conventional
methods for assessing cognitive load have yet to attain this.
Most current methods are either post-hoc subjective
assessments of cognitive load, or are often not sensitive to
changes in cognitive load.



In this paper, we collect data from a range of psycho-
physiological sensors to explore which ones are useful for
assessing cognitive load. As an initial undertaking, we
focus on obtaining a method for the objective and real-time
assessment of cognitive load while performing tasks that
focus on visual perception and cognitive speed. We chose
this problem space because it is relevant to many ubicomp
contexts of handling interruptions, multitasking and divided
attention in the real world — for example, driving and
reading a secondary display, attending a meeting receiving
a text message, working and observing an ambient display
or walking and accessing a mobile device, to name a few.

To derive a measure of cognitive load in this context, we
present a variety of stimuli that occupy elementary
cognitive processes, which help us to understand divided
attention issues. We sense a number of psycho-
physiological responses to those stimuli, and use them to
determine which responses are most predictive of cognitive
load. Our result is an initial model for detecting the degree
of cognitive load a user is experiencing in tasks that require
visual perception and cognitive speed.

In creating this model, we address the following questions:

e Can we acquire a real-time, objective measure of
cognitive load by examining a wide range of psycho-
physiological sensor streams for tasks that leverage visual
perception and cognitive speed?

¢ How do the psycho-physiological signals that produce the
best cognitive load classifiers differ across individuals?
i.e., can a single model or single set of signals be used
across all individuals?

To address these questions, we explore the predictability of
cognitive  load based on  psycho-physiological
measurements. To do so, we design a user study in which
we present six elementary cognitive tasks, each of which is
manipulated to induce either high or low cognitive load. We
use four sensor devices to measure psycho-physiological
responses from twenty participants to these induced loads.
We collected time-on-task performance data, and subjective
rating of the difficulty of the task. Analyzing this data plus
the physiological measures, we found that across all
participants, the median heat flux and electrocardiogram
median absolute deviation measurements were the most
accurate at distinguishing between low and high levels of
cognitive load, providing a classification accuracy of over
80% when used together. Our contribution is a real-time,
objective, and generalizable method for accurately
assessing cognitive load in cognitive tasks commonly found
in ubicomp systems and situations of divided attention.

RELATED WORK

Our literature review spans the domain of cognitive
capabilities and cognitive load, assessment methods and
tools, and psycho-physiological responses. Our goal was to
assess the literature to ascertain the best approach for
determining a measure of cognitive load.
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Cognitive load

Cognitive load is defined as a multidimensional construct
representing the load that a particular task imposes on the
performer [32, 33]. This also refers to the level of perceived
effort for learning, thinking and reasoning as an indicator of
pressure on working memory during task execution [53].
This measure of mental workload represents the interaction
between task processing demands and human capabilities or
resources [16, 49].

Subjective rating-based methods (self-reporting)

Both subjective and objective methods have been used to
assess a user’s cognitive load. We first discuss the
subjective approaches. A number of studies have found that
post-hoc self-reports of cognitive load are a relatively
reliable method for assessing mental effort [34]. In fact, the
most commonly used assessment for cognitive load is the
subjective NASA task load index (TLX) tool [17]. Despite
widespread use of the NASA TLX, other studies do not
consider the self-reports to be reliable indicators of
cognitive load [e.g., 28]. The subjective, post-hoc nature of
this assessment approach can make it difficult to apply in
ubicomp systems where automated and immediate
assessment is often crucial.

Task Performance-based methods

While less commonly used, a more objective assessment of
cognitive load is to measure task performance. Primary task
measurements use the performance on a primary, focal task,
while secondary task measurements use the performance on
a secondary task that is performed simultaneously with the
primary task [34]. In this approach, the variation of reaction
performance represents the variation in cognitive load.
However, the user must be subjected to enough of the task
for which the performance is being measured, in order to
use this assessment technique. This may not always be
viable in a ubicomp setting where users are switching
frequently between primary tasks, and multitasking. As
well, this approach is not always sensitive to small
differences in cognitive load: i.e., if a user performs two
tasks equally well, the perceived cognitive load will be
identical, although the actual load may not be.

Combinational methods

A few researchers have attempted to integrate behavioral
models into a performance model. [15, 36, 37, 41, 42]. This
integration can help predict the performance effect of, for
example, different phone dialing interfaces, and driving
steering tasks. While these approaches are very promising,
they require the creation of a sophisticated task model using,
for example, ACT-R or GOMS, that is specific to the task
being studied. Instead, we are interested in a more
generalized method for assessing cognitive load.

Physiological response-based methods

In this work, we apply a psycho-physiologically-based
assessment approach, to address the issues with the
previously discussed approaches: need in-the-moment,
automatic assessment of cognitive load, and to assess load
even when no change in task performance can be detected,



for a variety of tasks without significant customization.
While typically not used outside a laboratory environment,
cognitive load has also been assessed by measuring changes
in psycho-physiological signals [34, 23]. This approach is
based on evidence that varying task difficulty influences
psycho-physiological signals such as pupillary responses,
eye movements and blink interval [3, 21, 22, 52], heart rate
(HR) and heart rate variability (HRV) [10, 29, 52],
electroencephalogram (EEG or brainwave levels) [23, 52],
electrocardiogram (ECG) [23], galvanic skin response
(GSR) [21, 43], and respiration [29].

Our approach provides an opportunity to objectively detect
small variations in cognitive load, in real-time, as desired
by ubicomp systems. As we are interested in identifying a
generalized mechanism for assessing cognitive load, we
will stimulate that load using tasks that leverage basic
cognitive processes related to visual perception and
cognitive speed. While the earlier psycho-physiological
studies provide a solid base to build from, none of them
have focused on such basic processes. Instead, they have
used applied tasks such as document editing [22], simulated
public speaking [10], and traffic control management [43]).
We are unable to use their results directly because they
leverage combinations of cognitive processes, whereas we
are interested in cognitive load responses to individual
processes. Instead, for the ubicomp domain, we build
significantly on this previous work in using psycho-
physiological signals but by using cognitive tasks
appropriate to ubicomp, that is, tasks that leverage visual
perception and cognitive speed.

ELEMENTARY COGNITIVE TASKS

In measuring psycho-physiological signals to obtain a
measure of cognitive load, our approach is to present a
variety of stimuli, in the form of elementary cognitive tasks.
An elementary cognitive task (ECT) refers to any of a range
of basic tasks which require only a small number of mental
processes and which easily specify correct outcomes [4].
Most ECTs designed in the field of psychology have been
used to demonstrate individual differences (or personal
characteristics) between more than two participant groups
(e.g., patients vs. health-controlled people, younger people
vs. elder people) [1, 4, 38, 39, 40].

In this study, we focus on ‘visual perception’ and ‘cognitive
speed’ among the human cognitive abilities addressed in [4,
27]. These abilities highly engage spatial orientation or
spatial attention [11], which are highly leveraged in today’s
world of location-based services, situations of divided
attention, and ubicomp applications where you may be
attending to one activity (e.g., crossing the street) and are
either interrupted by incoming information (e.g., text from a
friend or ad from a nearby store) or seeking information
(e.g., search for information on a car that just drove past).

Based on a review of a number of cognitive factors to
assess the elementary cognitive abilities, we identified the
major discriminable first-order factors in the areas of visual
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perception or ‘major spatial factors’ [25] and cognitive
speed. These factors are ‘flexibility of closure’ (CF), ‘speed
of closure’ (CS) and ‘perceptual speed’ (PS). We note that
the mental processes related to these three cognitive factors
highly associate with handling interruptions, the execution
of dual-task processing (e.g., way finding requiring spatial
attention switching or cognitive mapping) or integration
tasks (e.g., comparing the appearance of an ambient display
with a mental legend that indicates its meaning) [13, 50, 51].
These activities are common in a wide variety of ubicomp
applications and the cognitive factors generalize well to the
ubicomp domain.

Flexibility of closure (CF) refers to the ability to keep one
or more definite configurations in mind so as to make
identifications in spite of perceptual distraction [12]; it also
refers to the ability to hold a given visual percept or
configuration in mind so as to disembed it from other well-
defined perceptual material [6]. Speed of closure (CS) is the
ability to combine disconnected, vague, visual stimuli into a
meaningful whole [11]; it also refers to the ability to unify
an apparently disparate perceptual field into a single percept
[4]. As an example, these two cognitive processes operate
when we identify an incomplete picture (CS) or detect a
reference pattern (a figure, object, word, or sound) that is
hidden in other distracting materials (CF). Perceptual speed
(PS), also known as ‘inspection time’ [31, 35], is the
cognitive ability to quickly and accurately find target
information in literal, digital or figural forms, make
comparisons, and carry out other very simple tasks
involving perception [12]. Most of the ECTs for this factor
arrange one or more visual stimuli, and ask a participant to
compare a presented object with a remembered object [4].

In the design of our experiment, we leverage these three
basic cognitive factors to assess how cognitive load changes
as the task difficulty changes. In our experiment, we focus
more heavily on aspects of perceptual speed. Issues of
divided attention and interruptions decrease our perceptual
capacity, and, in particular, most critical incidents in mobile
contexts come from delayed inspection time (i.e., slowed
perceptual speed) because one’s attention was not switched
to the appropriate stimulus in time. Perception and reaction
time to stimuli necessarily precedes how to interpret the
visual organization of the stimuli. Therefore, in this study,
we employ more ECTs for the 'perceptual speed' factor (4)
than the other factors (1 each). We discuss our exact
experimental design in the following section.

EXPERIMENTAL DESIGN

Participants and tasks

To minimize the confounds of age-related decline in
cognitive abilities, we recruited twenty younger participants
(younger than 35) with normal or corrected-to-normal
vision and hearing (age range/mean/SD: 19-34/25.15/4.45,
gender: female 25% and male 75%). They performed six
elementary cognitive tasks (ECTs) for 14 minutes 49
seconds on average (net time-on-task). They were asked to
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Figure 1. Experiment setup and sensor devices

wear three sensor devices and execute all the tasks in front
of two cameras for gaze tracking installed at the bottom of
the screen (screen size: 47.2cmx29.5cm, resolution:
1280x768) (see Figure 1). The participants used a mouse
and a keyboard to answer the screen-based ECT questions.

For each ECT, two sets of questions were shown to the
participant in a random order. One of the sets contained
questions of lower difficulty level (inducing a lesser degree
of cognitive load) while the other was comprised of more
difficult questions (inducing a greater degree of cognitive
load). We piloted the two sets for each ECT with 10
individuals not participating in the actual study, and
collected subjective ratings of difficulty for each question
from these participants, to validate that the two sets had
distinguishable differences in difficulty.

After each ECT question set, the participant was asked to
give his/her subjective rating of the difficulty of the task,
for a total of 12 ratings (6 ECT types x 2 question sets with
low/high difficulty levels). As a final step, a questionnaire
was given to collect each participant’s demographics, to
verify that they did not partake in any activities prior to
participating in the experiment that could impact their
results (e.g., smoking, drinking coffee or other caffeinated
drinks, performing any strenuous exercise), and to get a
self-report on any impairments and their mental and
physical wellbeing. After the questionnaire, subjects were
compensated $15 US for their time.

Testbed

A Java-based application was implemented for presenting
the six ECTs to subjects. We counterbalanced both the
order of the ECT question types and the difficulty of the
question sets for each type using a Balanced Latin Square
design [5]. For each question set, the subject was given 3
minutes to review the question slides and answer the
questions. If this set time was exceeded, the subject was
automatically directed to a task difficulty rating slide and
the test continued with the next set of questions. Before

304

FA NC GC
1notion Z 381 3
-
] loiter 7110 Wi
261 Y
vl cease N
84420 L.
Spoch 5982
) archer
I siphon
superb

[ buried
viwoman
impose

I horror

SX
Figure 2. Six elementary cognitive tasks (ECTs)

each question set, the subject was asked to close his/her
eyes for a brief period of mental relaxation. The application
logs the subjects’ answers and ratings along with a time
stamp and current question set information (type and
difficulty level), so that the performance (task completion
time and number of correct answers) can be analyzed.

Six ECTs

As stated earlier, we selected six ECTs that mapped onto
the 3 contextual factors (speed of closure, flexibility of
closure and perceptual speed) identified earlier. The ECT
contents and scoring methods used, originated from
conventional ECTs based in psychology and cognitive
science [6, 7, 8, 40] and were adapted to allow
manipulation for task difficulty. We now describe the ECTs
we presented to our subjects.

ECT1 - GC (Gestalt Completion) test

This test measures the ‘speed of closure (CS)’ factor [51].
The subject was asked to look at an incomplete line
drawing and try to identify it [6, 7] (see Figure 2, GC). For
each level of difficulty, 5 unique images were presented,
with the complexity of the images higher in the high level
of difficulty than in the low level.

ECT2 - HP (Hidden Pattern) test

This test measures the ‘flexibility of closure (CF)’ factor.
Each subject was shown a model image, in the form of a
line drawing, and a row of comparison images [6, 7] (see
Figure 2, HP). The task was to see whether the model
image was hidden in the composition of other comparison
images. Task difficulty is increased by adding more
distractive branches to the images (i.e., making the images
more complex). For each level of difficulty, five model
images, each with eight comparison images, were presented.

ECT3 - FA (Finding A's) test

This test (along with the next three) measures the
perceptual speed (PS) of a participant, in finding the letter
‘a’ in presented words [6, adapted from Thurstone’s Letter
Al. In this test, the participant was asked to find five words
containing the letter ‘a’ on a page full of words (see Figure
2, FA). The length of the words was used as the criterion of
difficulty where the two sets of questions contained words
of length 3-5 and 7-9 letters, respectively. For each level of
difficulty, two questions with 40 words in each to review
were presented.
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Figure 3. Average Time-on-Task (sec) vs. Task Difficulty
(Low/High). The number of participants who did not finish a
task within the time limit is in parentheses.

ECT4 - NC (Number Comparison) test

This is a test to find out how quickly the participant can
compare two numbers and decide whether or not they are
the same [6, 7] (see Figure 2, NC). Difficulty was
manipulated by increasing the number of digits in each
number and the number of digits that participants have to
compare to identify the first differing digit (with an
assumption that most people read numbers from left to
right). For each level of difficulty, four questions with five
pairs of numbers each were presented to the participant to
review.

ECT5 - PT (Pursuit) test

This test measures how well participants can visually track
irregularly curved overlapping lines from numbers on the
left side of a rectangle to letters on the opposite side [40].
The participant is asked to trace each line from its
beginning to its end with only his/her eyes (see Figure 2,
PT). Task difficulty was controlled by manipulating the
number of times the lines crossed each other, the length of
the lines and whether backward tracking was required (i.e.,
necessary for participants to gaze backward in the direction
toward the starting point). For each level of difficulty, one
question with ten curves was presented.

ECT6 - SX (Scattered X's) test

The goal of this test is to find the letter ‘X’ on screens
containing random letters [40] (see Figure 2, SX). In this
test, the overall number of letters, the proximity between
the letters (how crowded) and the existence of similarly-
shaped or rotated letters on the page are all used as criteria
of difficulty. For each level of difficulty, participants were
given 4 screens of letters to review.

Validation of task difficulty

To ensure that our manipulation of high and low cognitive
load worked, and that our study design was valid, we
performed a series of validation steps. For each of our six
ECTs, we wanted to verify that the two sets of questions
presented actually had two distinguishable levels of
difficulty, high and low. In addition to our pilot test
mentioned earlier, we also validated the task difficulty
using participants’ performance on the tasks and their
subjective ratings of task workload.
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Task Performance (Time-on-Task)

We use participant performance to determine the difference
in how much participants struggled to solve each set of
questions. Most of the question sets were designed to keep
participants engaged in solving the questions, rather than
immediately giving up. As there was greater variation in
‘time-on-task’, the time a participant needed to complete a
set of questions, than in accuracy, we focus our validation
on ‘time-on-task’. (Note, however, that the low variability
in accuracy means that a typical task-performance accuracy
assessment would not have been useful for assessing
cognitive load in our experimental setting.)

Rating (Task Load Index)

After each set of questions, participants completed
subjective workload assessments. For this, we used the
NASA-TLX (Task Load Index) [17], in which the
participant provided subjective ratings along six subscales:
Mental Demands, Physical Demands, Temporal Demands,
Own Performance, Effort Level and Frustration Level. Each
subscale was a five-point Likert scale, ranging from Very
Low (1) to Very High (5). We added the subjective ratings
of the six factors to create an integrated load index.

Validation Results

We tested both time-on-task and participants’ ratings of the
question types to validate our manipulation of task
difficulty in each ECT. Our results demonstrate that our
manipulation is valid.

e Task performance

Figure 3 compares the average time-on-task for both levels
of difficulty for each of the ECTs. It illustrates that there
was a significant difference in the time-on-task between the
low and high difficulty question sets for each ECT (p<0.05).
On average, the participants spent 74.7 seconds answering
each set of the questions; taking an average of 43.0 seconds
for the easier questions, and an average of 105.8 seconds
for the harder questions.

¢ Subjective rating

Figure 4 compares the average subjective rating for both
levels of difficulty for each of the ECTs. There was a
significant difference in the participant rating of the low
and high difficulty question sets (p<0.05), for each of the
ECTs except for the HP test. Although participants took



significantly different amounts of time to complete the low
and high difficulty question sets for HP (p<0.05), their
subjective ratings were indistinguishable.

Based on the combination of the pilot test results, the
performance analysis and the subjective analysis, we
conclude that our manipulation of low and high difficulty
question sets was successful. Next, we describe the sensing
devices we used to measure psycho-physiological signals
while the various ECT stimuli were presented.

Psycho-Physiological sensors

In this study, we used four sensor devices — a contactless
eye tracker, BodyMedia armband, wireless EEG headset,
and a wireless heart rate monitor — to measure the psycho-
physiological signals from our participants during task
execution. Three computers (main tester, eye tracking
system, headset reader) were used to collect data and had
their clocks synchronized to allow for data integration.

Contactless eye tracker

Earlier work has shown the value of tracking eye
movements and changes in pupil size as measures of
cognitive load [3, 21, 22, 52]. We used a SmartEye 5.5.2
eye tracking system (http://www.smarteye.se) to detect and
record the pupillometry (change in pupil size) of
participants. The system is comprised of two cameras (Sony

XC-HR50 with 12 mm lenses) and two Infrared (IR) flashes.

The eye tracking system was calibrated for each participant,
through a standard eye profiling task.

ECG-enabled armband

The BodyMedia SenseWear Pro3 armband
(http://www.bodymedia.com) was used to collect a number
of psycho-physiological responses that previous work
showed to be valuable for measuring cognitive load,
including electrocardiograms (ECG), and galvanic skin
response (GSR) [21, 23, 43]. The armband was placed on
the participants’ left arm and two cables were plugged into
the two conductive electrodes for measuring ECG, which
were adhered above the clavicle and to the top-center of the
back of the left arm (triceps). The device was used to
collect galvanic skin response (GSR), heat flux (rate of heat
transfer) and median absolute deviation (MAD — measure
of variability) of the ECG.

Wireless EEG headset

As earlier work showed a correlation between
electroencephalogram (EEG) or brainwave signals and
cognitive load [23, 52], we used a NeuroSky mindset kit
(http://www.neurosky.com) to extract, filter and amplify
EEG signals and convert this information into two mental
state outputs (attention and meditation). The brainwave
signals provided by the headset are the raw EEG signal and
the band powers: delta (1-3 Hz), theta (4-7 Hz), low alpha
(8-9 Hz), high alpha (10-12 Hz), low beta (13-17 Hz), high
beta (18-30 Hz), low gamma (31-40 Hz) and high gamma
(41-50 Hz). The participants were asked to adjust ear cup
sensors (ground and reference points) and a forehead-sensor
arm (the primary electrode) to make skin contact with their

306

left ear and forehead, respectively. A Bluetooth-based data
logger was used to collect the signals and to verify signal
strength and connectivity.

Wireless HR monitor

Finally, HR and HRV were shown to have value in
assessing cognitive load [10, 29, 52], so we used a Polar
RS800CX HR monitor (http://www.polar.fi/en) to collect
interbeat interval (IBI) information with an accuracy of 1
ms. The device is comprised of a wireless transmitter
attached to an elastic strap worn around the chest of the
participant and a wrist worn training computer that stores
the collected data.

Data analysis
We now discuss our approach for analyzing the psycho-
physiological data for creating models of cognitive load.

Data

We recorded six psycho-physiological signals with the four
devices. These were the interbeat interval signal measured
with the HR monitor, galvanic skin response mean (32 Hz),
heat flux mean (1 Hz) and ECG MAD information (32 Hz)
measured with the armband, pupil diameter (60 Hz)
measured by the eye tracker and EEG (128 Hz) measured
with the headset. In addition, the headset gave eight power
values (1 Hz) and two mental state outputs (1 Hz) derived
from the raw signal. Examples of each of the signals are
shown in Figure 5.

Gestalt Completion,
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Figure 5. Example psycho-physiological signals collected
during the Gestalt Completion test (low and high difficulty).



Because of technical difficulties with the measurement
devices and anomalies in the HR data from participants 1
and 9, the EEG measurements from participant 8, and the
GSR, heat flux and ECG MAD measurements from
participant 20, these measurements were not used in the
analysis. Additionally because of an error in the
implementation of the Java-based test-bed, the question sets
of lower difficulty for two of the subjects (11 and 12) in the
PT and FA tests, respectively, were not presented to the
subject. These question types were excluded from the
analysis of the data from those participants.

Preprocessing

Before analysis, the heart rate IBI data was preprocessed by
removing outliers falling outside the range of 35-155 bpm
(387-1714 ms). The GSR values were observed to have an
increasing trend at the beginning of each measurement
caused by the properties of the measurement device. This
trend was removed and the lowest and highest 0.1 percent
of values from each participant were excluded as outliers.

Features

The level of cognitive load (low vs. high) was modeled
using features derived from non-overlapping segments of
psycho-physiological sensor data corresponding to the
different questions in the ECT tests. Because the question
sets in the Pursuit test were comprised of only one question
each, the data corresponding to these segments was divided
into two parts to increase the number of samples available
for the modeling. Altogether 5/ statistical features were
calculated from the psycho-physiological signals measured
with the four devices.

The mean, variance and median of pupil diameter, GSR,
heat flux, ECG MAD, 8 EEG power values and two mental
state outputs (attention and meditation) were calculated.
Spectral power was also calculated from the raw EEG
signal on five bands (delta 0-4 Hz, theta 4-7 Hz, alpha 8-12
Hz beta 12-30 Hz and gamma over 13 Hz) to compare to
the values calculated by the EEG headset. Average powers
for each of these were used as features. Two HRV features
(standard deviation of IBIs (SDNN) and the root mean
square of the difference of successive IBIs (RMSS)) and the
mean and variance of HR were derived from the HR data.

Modeling

We then evaluated the performance of each of the features
in assessing cognitive load. Because of individual
differences in the levels of psycho-physiological responses
to cognitive load, each participant was modeled
individually. For each question type, the data from the
separate questions were classified into one of two classes
representing the two difficulty levels. Classification was
performed based on one feature alone, using a Naive Bayes
classifier. We used a leave-one-out validation approach
between the questions in each question type to calculate the
average classification accuracy for the question type. Data
from all but one of the questions was used to train the
classifier and the data from the remaining question was
used to evaluate the classification accuracy. This was

repeated for all the questions in turn and the accuracy for
the question type was defined as the average of these
accuracies (i.e., if a question type presented 5 questions to
the user, we averaged over the 5 leave-one-out results).
Because the difficulty levels in two different question types
were unlikely to correspond to each other (e.g., high
difficulty questions for the Finding A’s and the Pursuit
tasks would not necessarily induce the same amount of
cognitive load in a participant), only data from the same
question type was used in the classification. The overall
classification accuracy of the feature was then calculated as
the average accuracy over the 6 question types. This was
performed for each participant and each feature in turn.

RESULTS

The best feature and the corresponding classification
accuracy for each participant are shown in Table 1. The
results show that for each participant, a feature that
discriminates the two classes with a high accuracy was
found. Most of the best features were calculated from either
the heat flux measurement or the ECG MAD signal.

Table 1 also presents the classification results for the three
groups of tests targeting the ‘speed of closure’ (SC),
‘flexibility of closure’ (FC) and ‘perceptual speed’ (PS)
factors contributing to cognitive load. On average, we

Sb# | Avg% | CS% | CF% | PS% Best feature

1 82.5 | 100.0 | 70.0 | 81.3 median: heat flux

2 | 86.7 | 90.0 | 80.0 | 87.5 median: ECG MAD

3 86.7 | 100.0 | 70.0 | 87.5 mean: heat flux

4 74.0 | 70.0 | 50.0 83.3 median: ECG MAD

5 | 817 | 800 | 600 | 87.5 | median: EEG powerlow
beta

6 | 76.3 | 60.0 | 60.0 | 84.4 mean: EEG attention

7 83.3 | 100.0 | 100.0 | 75.0 median: heat flux

8 80.4 | 70.0 | 100.0 | 78.1 median: heat flux

9 | 863 | 90.0 | 900 | 844 |median: EEG power high
beta

10 | 87.0 | 60.0 | 100.0 | 91.7 median: heat flux

11| 925 | 100.0 | 100.0 | 87.5 median: ECG MAD

12 | 755 1 90.0 | 50.0 | 79.2 variance: GSR

13 | 783 | 90.0 | 30.0 | 87.5 mean: ECG MAD

14 | 80.8 | 60.0 | 100.0 | 81.3 | median: pupil diameter

15| 825 | 100.0 | 70.0 | 81.3 median: ECG MAD

16 | 81.3 | 50.0 | 100.0 | 84.4 median: ECG MAD

17 | 88.3 | 80.0 | 100.0 | 87.5 variance: ECG MAD

18 | 89.2 | 80.0 | 80.0 | 93.8 mean: heat flux

19 | 94.0 | 100.0 | 70.0 | 100.0 mean: heat flux

20 | 763 | 500 | 700 | 844 | Vvariance: EEG power
theta

Table 1. The best feature for each participant and the
corresponding classification accuracy: overall, speed of
closure (CS), flexibility of closure (CF), perceptual speed (PS).



Sensor Feature Avg%| CS% | CF% | PS%
Heat flux median 76.1 | 73.7 | 674 | 76.6
ECG median: MAD 714 | 80.5 | 747 | 68.3
EEG median: attention | 60.2 | 67.4 | 61.6 | 54.7

HR mean 587 1 67.8 | 572 | 57.0
Pupillometry median 574 | 69.6 | 57.0 | 53.8
GSR variance 53.7 | 584 | 50.0 | 50.9

Table 2. Average classification results of the best features from
each sensor stream over all participants: overall, speed of
closure (CS), flexibility of closure (CF), perceptual speed (PS).

Features Avg % CS % CF% | PS%
median: heat flux +
median: ECG MAD 81.1 83.7 83.1 81.0

Table 3. Classification accuracy of the two best features from
the BodyMedia SenseWear Pro3 armband combined. The
result is calculated as an average over all the participants.

succeeded in modeling cognitive load related to each of the
factors. The accuracies for the CF factor are somewhat
inferior to the results for the other two factors and also the
variation in these accuracies is larger. However, this
follows logically from the fact that the two levels of
difficulty in the Hidden Pattern test targeting this factor did
not differ significantly in the analysis of the subjective
ratings.

In Table 2 the average classification results over all 20
participants are presented, using models created with the
best feature from each sensor stream. Here again, the
features that perform the best are based on either the heat
flux measurement or the ECG MAD signal. The
classification performance of all the other features is clearly
inferior.

The two best features (median of heat flux and median of
ECG MAD) were then used together to classify the levels
of cognitive load. The average classification accuracy
across participants is shown in Table 3. The result (81.1%)
is higher than the accuracy of using any single feature
alone. This combination of features performed equally well
in each of the test categories targeting different factors of
cognitive load.

The above accuracy results come from individual models
created for each participant. We also attempted to find a
single model that would have been able to accurately
discriminate different levels of cognitive load across

participants. However, due to individual differences
between participants, we have not yet been able to do so.
DISCUSSION

In this study, our goal was to establish a method for
evaluating the cognitive load of a participant during the
execution of elementary cognitive tasks. In particular, we
examined tasks that focus on visual perception and
cognitive speed since these factors are relevant to many
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ubicomp contexts. We targeted the three major
discriminable first-order factors in these areas: ‘speed of
closure’ (CS), ‘flexibility of closure’ (CF) and ‘perceptual
speed’ (PS). These factors were chosen because the
cognitive processes they are associated with also appear in
situations of divided attention.

We evaluated the usefulness of a wide range of psycho-
physiological signals in assessing cognitive load in six
different elementary cognitive tasks. Four of the tests were
chosen to address the PS factor while each of the other two
tests targeted one of the other factors, SC and FC. Our
results demonstrate that, for each participant, a psycho-
physiological signal was found that can be used to
accurately discriminate (74%) tasks of low and high level
of difficulty, and following that, levels of low and high
cognitive load in participants. Across all the participants,
the heat flux and ECG MAD measurements were shown to
be the best indicators of differences in cognitive load. When
combined, a classification accuracy of 81.1% was achieved.

In addition to the overall accuracy in evaluating cognitive
load in the six tests, we also examined the validity of our
results with respect to each of the three factors (SC, FC, and
PS) contributing to cognitive load. We demonstrated our
ability to model each of these factors with equally high
accuracy (2 81.0%). Therefore, our results are potentially
very generalizable to different tasks inducing cognitive
load. As well, the average length of a data segment that we
used for classification was only 23.7 seconds, which means
that a real world implementation would react in close to
real-time, to changes in a user’s cognitive load.

Our results show great potential in being able to obtain a
real-time, objective and generalizable measure of cognitive
load. The two psycho-physiological signals identified as
most valuable in assessing cognitive load, heat flux and
ECG MAD, can both be measured with an armband that is
very easy to use and wear in everyday settings, can be
hidden under clothes, and is non-invasive. Therefore,
integration of information about the user’s cognitive load
within other ubicomp applications and systems is certainly
feasible.

While the same psycho-physiological signals produced the
best results, for the most part, across all the participants, we
were not able to build a single model based on these signals
that had high classification accuracy. Instead, individual
models were created for each user, based on the same
features. At least for now, this means that when our
cognitive load assessment is integrated into ubicomp
systems, there must be a short training period to create a
personalized cognitive load classifier for each user.

Our findings differ notably from the previous studies in
using physiological signals in modeling cognitive load
discussed in the related work section. In the previous
studies, all the measurement signals we used had been
found to contain information relevant to assessing cognitive
load. In our study, however, only the heat flux and ECG



measurements produced accurate results. One reason might
lie in the differences in the types of tasks the participants
were asked to perform while the signals were measured.
Different or more difficult tasks that call on different
cognitive capabilities might induce cognitive load that
manifests itself in different ways. It is also possible that the
GSR sensor, located on the participant’s arm, was not
sensitive enough. In other studies, more accurate finger
sensors have been used. The poor performance of the pupil
size measurement might be caused by the eye tracker
occasionally not being able to track a participant’s gaze,
which caused some data loss.

Our tasks, which focused on different levels of difficulty in
elementary cognitive tasks did not result in useful changes
in the majority of the signal streams used. However, our
physiological measurements confirmed that ECTs can be
used in interruption (or divided attention or dual-task)
studies as reliable stimuli that induce different amounts of
cognitive load.

CONCLUSION

Cognitive demands and limitations ebb and flow in
situations of divided attention; much more needs to be
understood about the limits of human attention and the best
ways to provide information to support it. As a first step to
remedy this situation, we collected data from multiple
sensors and compared their ability to assess cognitive load.
We focused on visual perception and cognitive speed-
focused tasks that leverage cognitive abilities common in
ubicomp applications. We targeted three major factors in
these areas: speed of closure, flexibility of closure and
perceptual speed. Data collected from multiple sensors
showed that across all the participants, the median heat flux
and ECG MAD measurements were the most accurate at
distinguishing between low and high levels of cognitive
load, providing a classification accuracy of over 80% when
used together. In achieving this, we provide a real-time,
objective, and generalizable method for assessing cognitive
load in cognitive tasks commonly found in ubicomp
systems and situations of divided attention. These results
can therefore be applied to both the development and
evaluation of ubicomp systems.

In continuing this work, we have a number of goals. First,
we will collect more data, which will allow us to evaluate
models with more features, and combine all features to
increase classification accuracy. Second, we would like to
identify a way to normalize the individual differences
between participants, perhaps through the use of a baseline
task, which would allow us to create a single model of
cognitive load for all participants, making our contribution
even more generalizable. Third, we will integrate our
results into a real ubicomp system, such as a mobile
location-based service or an ambient display, and evaluate
the ability of our approach to characterize cognitive load in
real world settings.
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