signals
examples of signals

length of column of mercury in a thermometer
angles of hands on a clock
or needle of automobile speedometer
intensity and frequency of sound when a tool
removes metal from stock turning in a lathe
electrical signals: voltage ~ power collected by
antenna, current ~ light intensity, etc
digital signals: ADC + microprocessor convert
electrical signal to message in some protocol
and unwanted signals (== noise)

light leaks thru a crack in your camera’s body
people talk at the table next to yours
strong radio station near weak one you want
observation-to-observation variation
measurand fluctuates (slouch or stand straight)
instrument fluctuates (meter stick trembles)

fundamental natural sources of fluctuation:
thermal motion (“Johnson” or “Nyquist” noise)
interval-to-interval statistical count variations (shot noise)
“chaos”, “uncertainty principle”, etc (1/f noise)
transduction
transduction (between modalities)
conversion of an environmental parameter into a signal is what we call sensing
temperature \rightarrow length of mercury column
force \rightarrow resistance of (stretched) length of wire
conversion of a signal into an environmental change is what we call actuation
finger pushes \rightarrow lever moves \rightarrow toilet flushes
signal \rightarrow power amplifier \rightarrow current through a resistor
\rightarrow heating of the environment
signal \rightarrow power amplifier \rightarrow robot arm motor \rightarrow motion
the signal is almost always electrical ...
... in modern times; it wasn’t always so!
electrical signals

before ~1960s almost all signals were effectively length measurements:
 temperature \rightarrow length of column of mercury
 voltage \rightarrow position of meter needle along arc
and occasionally some digital counting
 e.g., geiger tube + electrical or electronic counter

by the 1980s almost all signals were electrical quantities represented digitally:
 voltage \leftarrow light frequency (color) on sensor
 current \leftarrow light intensity (power) on sensor

parameters: resistance = voltage / current
review of elementary electricity & electronics
basic electrical concepts

charge: number of electrons, protons, etc
(each carrying a fundamental unit of charge)
current: charge per unit time flowing through an
imagined surface that cuts a wire,
or flowing into or out of a device terminal
voltage: potential energy per unit charge,
“pressure” in response to which current flows

general rule of transport:
measure of x {energy} per unit y {charge}
measure of y {charge} per unit time
rate {power} = (x/y) {voltage} * (y/t) {current}
basic electrical devices

resistor R (or, generally, *impedance*): current I that flows *thru it* \sim voltage V applied *across it*

capacitor C: time derivative of voltage applied *across it* \sim current that flows *into* or *out of it*

inductor L: time integral of voltage applied *across it* \sim current that flows *through it*

$I = \{V/R, C\, dV/dt, \int V\, dt/L\}$

$V = \{R\, I, \int I\, dt/C, L\, dI/dt\} \leftarrow$ most usual form

$= \{R\, dQ/dt, Q/C, L\, d^2Q/dt^2\}$

$Q = \{\int V dt/R, CV, \int \int V\, dt\, dt'/L\}$
\[I = \frac{V}{R} \quad \text{force a voltage, measure the current} \]
\[V = IR \quad \text{force a current, measure the voltage} \]
\[I = C \frac{dV}{dt} \quad \text{force a (changing) voltage, measure the current} \]
\[V = \frac{1}{C} \int I \, dt \quad \text{force a current, measure the voltage (as its integral)} \]
\[I = \frac{1}{L} \int V \, dt \quad \text{force a voltage, measure the current (as its integral)} \]
\[V = L \frac{dI}{dt} \quad \text{force a (changing) current, measure the voltage} \]
electrical & electronic sensors
basic electrical sensors

many are sources of voltage, current, or charge
CCD pixel voltage ~ integrated light intensity
Ionscan signal current ~ explosive vapor concentration
Geiger tube charge pulse ~ incident ionizing radiation particle energy
many others are “parametric”
strain gauge resistance ~ stretching of wire
humidity sensor capacitance ~ relative humidity
proximity sensor inductance ~ nearby metal
that in series resistances, inductances, and reciprocal capacitances add, whereas in parallel reciprocal resistances, reciprocal inductances, and capacitances add (with the proviso, for inductors, that they are really independent, i.e., they do not share each others magnetic fields)
We will see later, when we discuss AC signals and their decomposition into Fourier frequency components, that “dot” or “d/dt” is usefully written \(j2\pi f \) and “integral dt” is usefully written \(1/ j2\pi f \).
basic principle is often concealed!

- Simultaneous detection of explosives and narcotic traces
- 10.4" colour touch screen display.
- Extended internal memory for storing measurement data. Results are exportable via USB link.
- An advanced sampling wand eliminates the need for the operator to handle sample swab after every sample.
- A new, regenerative Air Purification System reduces maintenance and cost of ownership.

Download Ionscan 500DT leaflet (in .pdf format)

The IONSCAN® Model 500DT has been carefully designed to rapidly and simultaneously detect and identify trace amounts of drugs or explosives.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Technology</th>
<th>Dual Ion Mobility Spectrometry (DIMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug detection</td>
<td>Cocaine, Heroin, PCP, THC, Methamphetamine, LSD, Marijuana and others</td>
</tr>
<tr>
<td>Explosives detection</td>
<td>RDX, PETN, TNT, Semtex, Nitrates, NG, HMX and others</td>
</tr>
</tbody>
</table>