3D Printing Software Pipeline

Stelian Coros
Plan for Today

- 3D Printing Process
 - Input Model
 - Orientation Determination
 - Support Structure Determination
 - Slicing
 - Path Planning
 - Machine Instructions
3D Printing Process

Input Model / Formats

Orientation

Slicing

Support structure design

Path planning

Machine Instructions
Specifying Input Models

- Surface models (i.e. triangle mesh, subdivision surfaces, etc)
Specifying Input Models

- **Solid models**
 - Boundary representations (B-rep), constructive solid geometry (CSG), voxels, octrees
STL (Stereolithography) File Format

- Developed by 3D Systems
- Triangle “soup” - an unordered list of triangular facets
- Vertices ordered by the right hand rule

ASCII

```
solid name

facet normal ni nj nk
  outer loop
    vertex v1x v1y v1z
    vertex v2x v2y v2z
    vertex v3x v3y v3z
  endloop
endfacet

endsolid name
```

binary

```
UINT8[80] – Header
UINT32 – Number of triangles

foreach triangle
  repeat for each triangle
    REAL32[3] – Vertex 1

UINT16 – Attribute byte count (0)
end
```
3D Printing Process

Input Model / Formats

Orientation

Slicing
Support structure design

Path planning

Machine Instructions
Orientation Determination

• Factors
 - Surface accuracy
 - Build time
 - Minimize support volume / contact area
 - Mechanical properties
 - Packing multiple objects

• Involves analysis of the 3D model
Orientation Determination: Surface Accuracy

- Minimize difference between input shape and printed result
Orientation Determination: Build Time

- Build speed is generally slower for the z direction compared to the xy direction.
Orientation Determination: Support Volume

- Support material volume should be minimized
- Support material volume can be computed geometrically

more support volume

less support volume
Orientation Determination: Support Contact Area

- **Contact area** between support material and object
 - Why?

- Larger contact area
- Smaller contact area
Orientation Determination: Support Contact Area
• Transversely isotropic materials
 - Mechanical properties (strength/stiffness) are isotropic within a layer but different across layers

Source: http://en.wikipedia.org/wiki/
Orientation Determination: Mechanical Properties

- Typically strength/stiffness is larger within a layer and smaller across layers
Orientation Determination: Packing

- Pack as many objects as possible within a print volume
Typical Approaches for Orientation Determination

- **Manual placement**
 - User is responsible for placing parts on the build tray

- **Semi-automated placement**
 - User places parts on the build tray
 - System provides feedback on build time, support volume, support contact area, mechanical properties

- **Automated placement**
 - Placement is computed using optimization according to one or more objectives (build time, support volume, support area, mechanical properties)
Algorithms to Compute Orientation

- Exhaustive search
- Compute a uniform set of directions
 - Icosahedron subdivision
- Optimization-based
 - Compute objective as a function of orientation
 - Build time
 - Support volume
 - Support contact area
 - Mechanical strength
 - Pick orientation with the minimum value of the objective
 - Single objective (typical)
 - Multiple objectives need to be weighted (weights are difficult to set)

Possible project topic!
3D Printing Process

Input Model / Formats

Orientation

Slicing

Support structure design

Path planning

Machine Instructions
Support Structure Design

- Do not require support
 - SLS, DMLS, LOM, Plaster-based

- Require support
 - SLA, FDM, phase-change inkjet

- Different goals
 - Supporting overhangs
 - Prevent curling as materials harden
 - Maintaining stability (part does not move, tip over)
 - Supporting large flat walls
Support Structure Design

- Based on rules developed from observation
- Depends on a manufacturing method
 - e.g., different rules for phase-change inkjet and FDM (FDM allows surfaces tilted up to 45 degrees)
Support Structure Design

• Step 1: compute support volume
• Step 2: fill support volume with appropriate structure

• Want: easy to remove structures
• Do not want: significantly increase material usage or printing time
Support Types
Support Types

- Base support
Support Types

- Base support
- Zigzag support (FDM)
Support Types

- Base support
- Zigzag support (FDM)
- Column support (SLA)
Support Types

- Base support
- Zigzag support (FDM)
- Column support (SLA)
- Gusset support
Support Volume: Simple Conservative Algorithm

- Use ray casting in the z direction to compute all intersections for a ray.
- Sort intersections in the increasing z to determine intervals inside/outside of the object.
- Any outside intervals before the last inside interval should contain support.
Advanced Algorithms

- Minimize the use of support material

Huang et al. 2009

straight wall support

slant wall support
Advanced Algorithms

- Minimize the use of support material
Manufactured Result

Huang et al. 2009
Advanced Algorithms: Makerware
Advanced Algorithms: Meshmixer

http://www.youtube.com/watch?v=aFTyTV3wwsE
Bridging the Gap: Automated Steady Scaffoldings for 3D Printing

Jérémie Dumas, Jean Hergel and Sylvain Lefebvre

SIGGRAPH 2014
Trees - Pros and Cons

Good Support/length ratio

Very sensitive to small errors - unstable
Unstable structures
Think Bridges

Support/length ratio

Handles errors much better
Printing Bridges

Source: http://youtu.be/wK2APNwEoSk
Torque
Material usage

Competitive to trees

\[\|\| \| = 112\text{mm} \]

\[\|\| = 120\text{mm} \]

...Up to a certain height

\[\|\| = 89.7\text{mm} \]

\[\|\| = 121.7\text{mm} \]
Method Overview

1. Overhang detection
2. Bridge (scaffolding) synthesis
Overhang Detection

- Input: 3D Model + Slices + Print head paths
Overhang Detection

1. Use print paths
2. Uniform sampling
 - Need Support? Y / N
3. Simplify wrt print order
Scaffolding: Problem Statement

- In - Required Points
- Out - Valid Scaffolding

\[\text{Global constraint} \]
Goal: **Minimal Length** Scaffolding
Our Approach

- Finding a **global optimum** is not easy
- Heuristic Greedy Algorithm
Algorithm Overview

1. Score = Gain – $k \cdot l_{\text{max}}$
2. Required Points
3. Candidate Bridges l_{max}
4. Greedy Selection

$\vdash k$

k

k

l_{max}

l_{max}
Candidate Bridge Generation
Algorithm Overview
Stability During Printing
Stability Enhancement
Comparison (Enterprise)

- **Makerware**
 - 11.9m
 - 3h33

- **MeshMixer**
 - 2.5m
 - 3h38

- **PhotoshopCC**
 - 4.61m
 - N/A

- **New Method**
 - 2.69m
 - 3h14

3 cm
Results - Minotaur (New Method)

thing:46646
10 cm
Results - Hilbert Cube

thing:16343

3 cm
Limitations

- Sagging (see paper)
- Surface quality
- Computation time
Support Structure Generation:

Ongoing Research Topic

Possible project topic!
3D Printing Process

Input Model / Formats

Orientation

Support structure design

Path planning

Machine Instructions

Slicing
Quick NetFabb slicing demo
Slicing STL Models: Voxelization

- STL does not store connectivity - “triangle soup”
- Voxelization Algorithm:
 - For each voxel compute inside/outside (Assignment 1)
 - Extract contours
Slicing STL Models: direct approach

- STL does not store connectivity - “triangle soup”
- Algorithm:
 - For each z plane
 - For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store line segment
Slicing STL Models: direct approach

- STL does not store connectivity - “triangle soup”

- Algorithm:
 - For each z plane
 - For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store line segment
 - Connect line segments, store contours

From Choi and Kwok, 2002
Slicing STL Models: Issues

- STL models are not always watertight -> epsilons

Marsan et al, 1998
Slicing STL Models: Issues

- STL does not store connectivity - “triangle soup”

Algorithm:
- For each z plane
 - For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store line segment
 - Connect line segments, store contours

Very Slow!
More Efficient Slicing

- Precompute topological information (neighboring triangles)
- Find the first intersecting triangle
- Use triangle neighbors to find the next triangle
- But finding the first intersecting triangle is still slow
More Efficient Slicing

• Slicing is still a **bottleneck** when working with large models

• Many opportunities for very fast algorithms
 - Efficient out-of-core methods
 • when model does not fit in the memory
 - Using acceleration data structures
 - Z-sorting
 - GPU-based methods

• Possible project ideas!
Slicing Issues

- Discretization == lossy
Slicing Issues

- Given that each layer has a finite thickness, which solution to choose?
 - inside the model (negative tolerance/undersize)
 - outside the model (positive tolerance/oversize)
 - best approximation
Adaptive Slicing

- Slice height is adapted to the input geometry
- Adaptive slicing is rarely used
Slice File Formats

- **Common Layer Interface (CLI) format**
 - defined as polylines
 - both contour and hatch (fill pattern)
 - vendor independent format

- **SLC file format by 3D Systems**
 - defined as polylines
 - both contour and interior
3D Printing Process

- Input Model / Formats
 - Orientation
 - Slicing
 - Support structure design
 - Path planning

- Machine Instructions
Path Planning

• Two types
 - an entire layer of material is added at once
 • follow the slice directly
 - each layer is laid down incrementally (e.g., FDM, SLA)
 • fill the interior and possibly the contour separately

• Paths
 - Affect build time, surface accuracy, stiffness, strength, post-manufacture distortion
Path Planning

- Build time
 - repositioning the tool at the start of a new path
 - accelerating and decelerating for direction changes

- Surface accuracy
 - the filament size

- Distortion
 - materials with a high coefficient of thermal expansion
 - the top layer shrinks when it hardens and it distorts since it is tied to the bottom layer

- Stiffness and strength
 - the area and strength of bonds depends on spacing and the time interval between the tool traversal
Simple Path Planning for Raster-based 3D Printing

• Superimpose a voxel grid
• Test whether a voxel is inside/outside the model
• Works for DLP 3D printing, plaster-based 3D printing, phase-change inkjets
Simple Path Planning for Vector-based 3D Printing

- Superimpose a voxel grid
- Test whether a voxel is inside/outside the model
- Rows or columns are used as tool paths
 - tool starts/stops at transitions between exterior/interior
Simple Path Planning for Vector-based 3D Printing

- Superimpose a voxel grid
- Test whether a voxel is inside/outside the model
- Rows or columns are used as tool paths
 - tool starts/stops at transitions between exterior/interior
Simple Path Planning for Vector-based 3D Printing II

- Cast parallel uniformly spaced rays on the slicing plane
- Compute intersection intervals with the model
- The tool is turned on/off at interval intersections
Tracing Contours

- Improves accuracy of the surface
- Optional: offset inwards by distance equal to the filament radius
Tracing Contours

- Allows manufacturing hollow objects, some overhangs, some tilted surfaces
- Reduces frequency of tool repositioning
- Reduces support structures

http://www.3ders.org
Tracing Contours

- Can be combined with filling the interior
- Interior fill paths do not extend from border to border
 - stopped short of the contour

contour offset inwards + interior fill
Advanced Fill Patterns

• TriHatch (developed by 3D Systems)
 - developed for stereolithography (SLA)
 - interior layer is filled with equilateral triangles
 - skins fills on the bottom and top of the part

Horton et al 1993
Advanced Fill Patterns

- **STARWEAVE (developed by 3D Systems)**
 - Scan direction in each layer is perpendicular to the previous layer
 - Alternate layers are staggered (shifted by $\frac{1}{2}$ filament)
 - Fill paths do not extend from border to border

Horton et al 1993

- alternate sequencing
- staggered weave
- retracted hatch
More Fill Patterns

- **QuickCast**
 - Similar to TriHatch
 - Patterns offset for each layer
More Fill Patterns

- Criteria: print speed, structural properties, weight vs strength, etc

![Contour](image1)
- contour

![Raster](image2)
- raster

![Spiral](image3)
- spiral

Project opportunity

Kulkarni and Dutta 1999
Material Shrinkage/Warping

- Materials can shrink when cooling down/curing
- Path patterns can minimize this effect

• Minimal input is the slice description
• Optimal strategy requires knowledge of particular 3D Printing process, materials, etc
3D Printing Process

Input Model / Formats

- Orientation
- Slicing
- Support structure design
- Path planning

Machine Instructions
Machine Instructions

• Raster file formats
 - DLP 3D printing, plaster-based 3D printing, phase-change inkjets
 - Proprietary, not exposed
 - Can be exported as image files (e.g., PNG, BMP)

• Vector file formats
 - G-Code
 - SLI by 3D Systems - machine-specific 2D format for the vector commands that control the laser beam
G-code

- Numerical control (NC) programming language
- Developed at MIT in 1950s
- Used for CNC milling machines, now for many 3D printers

Sample Instructions

- **G00:** Rapid move
 - does not necessarily move in a single straight line between start point and end point. It moves each axis at its max speed until its vector is achieved.

- **G01:** Linear interpolation
 - specify the start and end points, and the control automatically calculates the intermediate points to pass through that will yield a straight line

- **G02:** Circular interpolation, clockwise
G-code Example

This program draws a 1" diameter circle about the origin in the X-Y plane.

seek the Z-axis to 0.25"
travel to X=-0.5 and Y=0.0
lower back to Z=0.0.
draw a clockwise circle at a slow feed rate.

lift the Z-axis up 0.1"
send back to X=0.0, Y=0.0, and Z=0.25

G17 G20 G90 G94 G54
G0 Z0.25
X-0.5 Y0.
Z0.1
G01 Z0. F5.
G02 X0. Y0.5 I0.5 J0. F2.5
X0.5 Y0. I0. J-0.5
X0. Y-0.5 I-0.5 J0.
X-0.5 Y0. I0. J0.5
G01 Z0.1 F5.
G00 X0. Y0. Z0.25

https://github.com/grbl/grbl/wiki/G-Code-Examples
3D Printing Process

Input Model / Formats

Orientation

Slicing

Support structure design

Path planning

Machine Instructions
Questions?
That’s All for Today!