
The Case for Offload Shaping

Wenlu Hu, Brandon Amos, Zhuo Chen, Kiryong Ha, Wolfgang Richter,

Padmanabhan Pillai†, Benjamin Gilbert, Jan Harkes, Mahadev Satyanarayanan

Carnegie Mellon University and †Intel Labs

ABSTRACT
When offloading computation from a mobile device, we show
that it can pay to perform additional on-device work in order
to reduce the offloading workload. We call this offload shap-
ing, and demonstrate its application at many different levels
of abstraction using a variety of techniques. We show that
offload shaping can produce significant reduction in resource
demand, with little loss of application-level fidelity.

1. Introduction
Offloading computation from a mobile device to the cloud

or a cloudlet is a well-known technique for improving perfor-
mance and extending battery life [5, 6, 9, 16]. This includes
optimal partitioning of a computational pipeline into early
stages that are executed locally, and later stages that are
executed remotely. The partitioning may vary dynamically,
depending on the supply and demand of resources such as
network bandwidth, energy, and cache space [3, 7, 8].

In this paper, we show that it is sometimes valuable to
perform additional cheap computation, not part of the orig-
inal pipeline, on the mobile device in order to modify the
offloading workload. We call this offload shaping. We show
that offload shaping can be applied at many different levels
of abstraction using a variety of techniques, and that it can
produce significant reduction in resource demand with little
loss of application-level fidelity or responsiveness.

We begin in Sections 2 and 3 by suppressing transmis-
sion of blurry images in video streams. In later sections, we
advance to more sophisticated techniques. We conclude by
motivating an API through which a cloud service can com-
municate application-specific offload shaping information to
a mobile device.

2. Example: Blurry Video
Object recognition within frames in a live video stream is

an example of a computationally expensive task that bene-
fits greatly from offloading [11]. Unfortunately, some video
frames may be blurry due to user movement, poor camera fo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile’15, February 12–13, 2015, Santa Fe, New Mexico, USA.
Copyright c© 2015 ACM 978-1-4503-3391-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2699343.2699351.

(a) Sharp (b) Blurry

Figure 1: Sharp and blurry frames of same scene

Coke Can
Frames Judged Frames Judged

by User 1 by User 2
Sharp Blurry Sharp Blurry

Detected 161 5 166 0
Not detected 2 91 4 89

Figure 2: Impact of blurry frames on accuracy

cus, moisture on the camera lens, or other reasons. Figure 1
shows two frames of the same scene: image (a) is sharp and
image (b) is blurred by camera motion. Blurry images can
adversely affect the accuracy of computer vision algorithms.

Figure 2 shows the measured accuracy of object recogni-
tion (specifically, the red Coke can seen in Figure 1), using
the MOPED algorithm for object detection [4]. Each of
the 259 frames in the test video, captured using a Google
Glass device at 640x360, contains one instance of the ob-
ject. Hence, an ideal recognizer would find exactly one ob-
ject in each frame. However, due to head movement during
video capture, some of the frames are blurry. On the 163
frames judged to be sharp by User 1, there were only two
objects missed by MOPED (false negatives). However, on
the 96 frames judged to be blurry by User 1, there were
91 objects missed by MOPED. User 2 produces similar re-
sults. Clearly, recognition accuracy suffers when a frame
is blurry. We expect other first-person videos taken with
head-mounted cameras to also have considerable numbers
of blurry frames.

It is a waste of wireless bandwidth and mobile device en-
ergy to transmit blurry frames to the offload engine, and to
wait for a response that is likely not meaningful. If a mobile

Send all Drop blurry
Bytes transferred 0.51M 0.34M
Glass energy (J) 429(2) 292(3)

Server CPU usage
1.00(0.01) 0.81(0.01)

(normalized)

Numbers in parentheses are standard deviations from 4 runs.
H.264 encoding is used.

Figure 3: Benefits of dropping blurry frames

(a) Blurry (b) Sharp
We apply a Sobel filter to 25 patches. Here, the resulting
gradients are shown overlaid on the original image.

Figure 4: Blur detection by Sobel filter

Detected by Sobel Filter
Blurry Sharp

Ground Truth
Blurry 74 22
Sharp 6 157

Figure 5: Accuracy of Sobel blur detection

device could cheaply and reliably detect blurry frames, it
could suppress transmission of those frames with hardly any
loss of accuracy. In the example video above, over a third of
the frames can be dropped safely at the device, significantly
reducing bandwidth and energy consumed. Figure 3 sum-
marizes the measured benefits of dropping the blurry frames
at the Google Glass device. In the next section, we explore
a number of ways of cheaply detecting blurry frames.

3. Cheap Blur Detection

3.1 Using Image Content
Detecting blur is a well-studied problem in image process-

ing [19]. Intuitively, image gradients will be more gradual
when an image is blurry because the edges in the image are
less sharp. We use a Sobel operator [18] to compute im-
age intensity gradients. To keep computational costs low on
mobile devices, our implementation samples 25 patches dis-
tributed over the image. If the gradient at any of the samples
exceeds a threshold, we deem the image to be sharp. Only if
the gradient is below the threshold in all samples do we deem
it to be blurry. Figure 4 shows the results of this technique
applied to two similar images that differ in sharpness. We
verify this approach on the video used in Figure 1, compar-
ing its results against the ground truth as judged by User 1.
Despite its simplicity, this method matches human-judged
blurriness with high accuracy, as shown in Figure 5.

We implement an offload-shaping filter on Google Glass
by using a Sobel operator to drop blurry frames before trans-
mission to a remote MOPED object detection service. We
measure the effects on energy, bandwidth, and latency. In
these experiments, frames transmitted from Glass are en-
coded in H.264 with B-frames disabled to satisfy low latency
requirements of real-time applications. They are sent to a
remote MOPED object detection service. This service runs
on a cloudlet [17], a server-class machine running a cloud
software stack and connected to the same LAN as the WiFi
base station. We use a dedicated WiFi access point to re-

No Drop Improve-
shaping blurry ment

Bytes transferred 0.51M 0.37M 27%
Frames recognized 171(2) 162(1) -5%
E2E latency (ms) 920(8) 859(14) 7%
Glass power (W) 1.82(0.01) 1.82(0.02) 0%
Glass energy (J/frame) 1.66(0.01) 1.51(0.02) 9%
Server CPU usage

1.00(0.01) 0.84(0.02) 16%
(normalized)

Figure 6: Blur detection with Sobel filter

duce interference and maximize bandwidth, thus favoring
offload without shaping. To stabilize Glass performance, ice
packs are used to cool the device externally [10], and a Blue-
tooth connection is established between Glass and a phone
but not used for data transmission [2]. The Glass screen is
kept off as it is not useful for this type of application. We
repeat each experiment 4 times, and report both mean and
standard deviations (in parentheses). As MOPED is nonde-
terministic, accuracy results have some variability even on
the same input. Unless noted otherwise, all experiments in
this paper use this experimental setup.

Figure 6 shows that dropping blurry frames results in sig-
nificant reductions in the bytes transferred (27%) and pro-
cessing cycles used on the server (16%), as well as a modest
reduction in the average end-to-end processing latency per
frame (7%). The mean latency improves because results
for dropped frames are known quickly. Because frames are
processed sequentially after the results of the prior ones are
returned, this also results in an increase in the processing
rate. So although Glass power is unaffected, the average
energy consumed per frame improves by 9%. All of these
improvements come at a slight 5% reduction in the object
detection accuracy. We note that even with“perfect”blurry-
frame dropping (i.e., using User 1’s labels from Figure 2),
we would have a similar 5% reduction in MOPED accuracy.

3.2 Using On-Board Sensors
Mobile devices such as smartphones and Google Glass de-

vices have on-board sensors such as accelerometers and gyro-
scopes. These sensors are attached to the same rigid object
as the camera, so their readings are correlated with camera
motion and any resulting image quality degradation.

At first glance, the accelerometer seems to be an obvious
sensor for detecting blur. However, our experiments show
otherwise. This is because blur is correlated with camera
velocity, but the accelerometer measures the derivative of
velocity (i.e., acceleration). In movements such as shaking
one’s head when wearing Google Glass, acceleration tends
to peak when linear velocity is low. Integrating acceleration
readings to yield velocity does not work well either, because
large errors quickly accumulate.

Fortunately, gyroscopes are increasingly common in mo-
bile devices and turn out to be effective at predicting blur.
Gyroscopes emit angular velocity in radians/s. Figure 7
shows a strong correlation between gyroscope readings and
blurriness ground truth, i.e. User 1’s label in our test video
from Figures 1 and 2.

We conclude a frame is blurry when its corresponding gy-
roscope reading exceeds a threshold. Figure 8 shows the
trade-off between frames dropped and accuracy as this thresh-
old is changed. Curve (a) is based on the video used above,

-1

0

1

0
1
2
3
4
5
6

1 51 101 151 201 251

B
lu

rr
in

es
s

(1
 fo

r b
lu

rr
y,

0

fo
r s

ha
rp

)

ω
 (r

ad
 /s

)

Time (Frame #)

ω Blurriness

Figure 7: Correlation between blurriness and gyro-
scope readings ω

0%

20%

40%

60%

80%

0% 20% 40% 60% 80% 100%

M
O

PE
D

 a
cc

ur
ac

y

Frames dropped

a) Video with primarily
angular motion

b) Video with primarily
linear motion

Figure 8: Frames dropped vs. MOPED accuracy
while gyroscope threshold changes

where blurriness is caused by head movement. In this case,
motion is primarily angular and readily detected by the gy-
roscope. Here, the strategy is effective at selecting the right
frames to drop, so many can be dropped before significantly
affecting accuracy. We also test on a second video primarily
containing linear motion. In this curve (b), gyro readings are
not helpful in selecting the right frames to drop, so accuracy
suffers immediately with any dropped frames. In practice,
angular movements have a greater effect on blurriness, since
they affect the entire scene, while effects of linear movement
drop off rapidly with distance.

Using the methodology from Section 3.1 and a threshold
of 0.5rad/s, we test the effectiveness of a filter that uses
the gyroscope to predict blurriness. The results in Figure 9
show significant reductions in bytes transferred, average pro-
cessing latency, and server load. Although power increases
slightly on Glass, the improvement in throughput leads to
better energy efficiency and the energy per frame improves
significantly (20%). Once again, these improvements are
achieved with only a small reduction in accuracy (8%).

4. Exploiting Inter-Frame Similarity
In live video streamed from a mobile device, the scene does

not often change appreciably between consecutive frames.

No Drop Improve-
shaping blurry ment

Bytes transferred 0.51M 0.37M 27%
Frames recognized 171(2) 157(1) -8%
E2E latency (ms) 920(8) 750(3) 18%
Glass power (W) 1.82(0.01) 1.87(0.01) -3%
Glass energy (J/frame) 1.66(0.01) 1.33(0.01) 20%
Server CPU usage

1.00(0.01) 0.84(0.00) 16%
(normalized)

Figure 9: Blur detection with gyroscope filter

0.00

0.25

0.50

0.75

1.00

0 16 32 48 64
Maximum Allowed Hamming Distance

R
at

io
 o

f D
ro

pp
ed

 F
ra

m
es

(a) Frames Dropped

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Ratio of Dropped Frames

A
cc

ur
ac

y

(b) MOPED Accuracy vs. Dropped Ratio

Figure 10: Effects of similarity filter

The results of many computer vision algorithms will likely
remain constant when applied to sequences of nearly identi-
cal frames. Hence, sufficiently similar frames can be safely
discarded to conserve bandwidth and energy.

How can we determine whether a frame is very similar
to the preceding one? This is much harder than it appears
at first glance. Directly comparing pixel values of adjacent
frames is not effective. Semantically insignificant changes
(e.g., minor camera movement, or fluorescent light flicker)
can cause a huge number of pixels to differ and result in a
large computed distance between frames, while meaningful
changes (e.g., objects moved within a scene) may not affect
many pixels and will result in a small computed distance.

Fortunately, the problem of image similarity has been well
studied in the literature. A family of techniques called per-
ceptual hashing has been developed to encode visual proper-
ties of images into bit strings [14, 15]. Importantly, distance
metrics between these image “hashes” do correspond to per-
ceived similarity between the source images, and are robust
to semantically insignificant changes.

We implement a perceptual hashing [20] filter based on
a 64-bit discrete cosine transform and a simple Hamming-
distance metric to determine similarity between frames. If
a frame is sufficiently similar to the last transmitted frame,
it is dropped, and the output of downstream processing is
assumed to remain constant. We compare a frame to the
last transmitted frame and not just to the previous frame;
otherwise, sequences of significant but slowly-accumulated
changes may be dropped entirely. We also force transmission
of a frame after 15 consecutive frames have been dropped.
This approach is better than a naive sampling of frames, as
it can respond immediately to sudden changes in the scene,
without waiting for the next sampling interval.

Figure 10 shows the filter’s impact on MOPED accuracy
on the video used in Figure 1. On a Google Glass device,
the hash and distance metrics can be computed in about
20 ms. Figure 10(a) shows that the hashes in our experi-

No Drop Improve-
shaping similar ment

Bytes transferred 0.51M 0.23M 55%
Frames recognized 171(2) 189(1) 11%
Glass power (W) 1.82(0.01) 1.83(0.01) -1%
E2E latency (ms) 920(8) 393(2) 57%
Glass energy (J/frame) 1.66(0.01) 0.72(0.01) 57%
Server CPU usage

1.00(0.01) 0.27(0.01) 73%
(normalized)

Figure 11: Similarity filter performance

0

10

20

30

40

0.0 0.5 1.0 1.5 2.0 2.5
Frame Bytes / Keyframe Bytes

Fr
am

e
D

is
ta

nc
e

fr
om

 K
ey

fr
am

e
H

as
h

Figure 12: Similarity vs. H.264 encoded frame size
(normalized)

ment never differ by more than 40 bits with the keyframe
hash. Figure 10(b) shows the trade-off between dropping
more frames and the MOPED accuracy. Unlike in the pre-
vious sections, where dropped frames are interpreted as de-
tection failures, we report the detector output from the last
transmitted frame for dropped frames. As a result, the rela-
tionship between accuracy and dropped frames is complex,
and can vary depending on the subset of frames sent.

Figure 11 shows the reduction in energy and bytes trans-
ferred with the test video. We are sending fewer than half
the bytes. As explained in Section 3.1 and 3.2, even though
Glass power increases by 1%, as frames are processed at
twice the original rate, energy consumed for each frame on
Glass is less than half its original value. The server CPU us-
age also drops to almost one fourth its original value. Here,
we again see significant reduction in cost, with little differ-
ence in fidelity.

Since video encoding algorithms are based on encoding
differences between frames, can we use the size of an encoded
frame to estimate its similarity to the preceding one? With
H.264 encoding, we did not find a clear relationship with
the size of the compressed frame, but did find a statistical
correlation between similarity and data size when normal-
ized to the preceding keyframe size (Figure 12). Here, the
encoding was based on GOP (interval between keyframes) of
10, used an x264 “medium” preset with a “zero-latency” tun-
ing option, and omitted B-frames. The correlation is very
noisy, and whether normalized encoded frame size is useful
for predicting similarity is left for future research. Further-
more, given the vast literature on video indexing and key
frame selection [12], there may be other encoding techniques
that provide a better correlation with similarity that can be
leveraged for offload shaping.

(a) Video with a large
Coke can (446 frames)

(b) Video with a normal-
size Coke can (510
frames)

Figure 13: Example frames for red filter

No Send Improve-
shaping red only ment

Bytes transferred 8.6M 2.8M 67%
Frames recognized 396(3) 380(5) -4%
E2E latency (ms) 471(12) 153(2) 68%
Glass power (W) 1.80(0.01) 1.99(0.02) -11%
Glass energy (J/frame) 0.84(0.01) 0.28(0.01) 67%

MJPEG encoding is used to deal with varying frame size.

Figure 14: Red filter with MOPED server

5. Context-sensitive Offload Shaping
Blurriness and inter-frame similarity are broadly appli-

cable mechanisms for offload shaping, regardless of the ap-
plication context. In this section, we show that strategies
tailored specifically to particular application contexts can
also reduce mobile resource usage. For example, every im-
age that contains the Coke can shown in Figure 1 will have
a patch of red in it. Hence, any frame lacking a red patch
cannot contain a Coke can. Discarding such frames achieves
effective offload shaping specific to the context of Coke-can
detection. However, this specialized filter will not be useful
in other contexts, such as finding blue cars.

Depending on the context, in addition to dropping unnec-
essary frames, it may be possible to crop the useful frames
to remove unneeded background. For example, for a face
recognition application, only faces are interesting. If we can
use a low-cost method to detect and crop the faces on the
mobile device, most of the pixels do not need to be trans-
mitted to the back-end recognition service.

5.1 Example: Color Filter
We first use color to perform offload shaping for Coke-can

detection. To select useful patches, we implement a simple
red color filter using Android OpenCV. We convert frames
to the HSV color space and use a simple distance threshold
to find pixels close to the desired color. We crop a rectangu-
lar region that encloses the largest connected component of
the desired color, with a narrow, fixed-width margin. Only
this cropped region is sent to the server.

We use a mostly-sharp video, shown in Figure 13(a), to
test the color filter. The green box shows the region that
is cropped out and sent to the server. Results in Figure 14
show significant reduction (around two thirds) in bytes trans-
ferred and average latency. As explained in Sections 3.1
and 3.2, although the Glass power increases slightly, the en-
ergy consumed per frame drops to one third of the original.
All of these benefits are achieved with only a small reduc-
tion in MOPED accuracy (4%). The benefits in this case are
limited by the large size of the Coke can in the frames. For
the video in Figure 13(b), where Coke can sizes are smaller

Video Whole Faces only Savings
description frames (MB) (MB)

One face, still 53.8 3.7 93%
Two faces, still 65.0 6.0 91%

Two faces, moving 65.8 4.9 92%

Each video is around one minute.

Figure 15: Face detection on Bosch cameras

and more realistic, only one tenth of the bytes are sent af-
ter applying the red filter and one fourth of time is needed
to process each frame. Note that the video resolution here
is 360x240. Our filters will make an even larger difference
for videos with higher resolutions, as they make greater de-
mands on network bandwidth.

5.2 Leveraging Hardware Accelerators
Many cameras and devices such as Google Glass now in-

clude features such as hardware accelerated face detection.
Face detection in hardware helps consumer-grade cameras
efficiently focus on what is commonly the most important
part of any frame. Many expensive cameras and an increas-
ing number of smartphones now also stabilize images ac-
tively. They move the lens in real-time to counter the effect
of camera movement. This can be viewed as hardware accel-
erated blur correction. In addition, a wide range of surveil-
lance cameras have on-board computer vision programs to
generate abstract information about surveilled scenes. These
programs can be re-purposed for offload shaping. For com-
mon tasks, hardware acceleration will be both quicker and
more efficient than software targeting a general-purpose pro-
cessor. Offload shaping can therefore leverage hardware-
based as well as software-based filtering.

To explore this possibility we experimented with a Bosch
surveillance camera, the Dinion HD 1080p HDR. For ap-
plications that are only interested in human faces, such as
mood or face recognition, this camera’s cheap, built-in face
detection functionality is helpful. We built a face filter,
based on the Dinion’s on-board face detection, that simply
crops and transmits only the faces in each frame. Figure 15
shows significant savings in bytes transferred.

6. Offload Shaping API
We have shown that offload shaping can help improve

bandwidth use, response time, and energy efficiency of of-
floaded tasks. In addition, the best strategies for offload
shaping are often context- and application-specific. In or-
der to handle the diverse needs of different applications, the
mobile device should have a simple API for dynamic speci-
fication of offload shaping. With this API, the applications
can dynamically specify and adjust the shaping they want
according to the context. Although we have been focusing
on individual shaping techniques so far, it would also be use-
ful to combine multiple techniques. Thus, the API should
support composing components. Finally, we would like the
system to be extensible, so new offload-shaping filters can
easily be added to the system.

Rather than design such an API from scratch, we observe
that many existing software libraries and frameworks have
similar requirements and have already-established APIs to
satisfy them. In particular, the GStreamer API [1] seems to
fit our needs well. It was designed as a pluggable system to
compose multimedia transcoding pipelines, but can be easily

Blur filter

(th=0.2)

Object detector
(path=

/models/qr_code)

Face detector

(min_size=10)

Similar frame

dropper

(th = 0.25)

OR

operator

Input Frames Demuxer

gst-launch input ! similar_frame_dropper th=0.25 ! demuxer name=dmx ! face_detector min_size=10

 ! or_operator name=or

 dmx. ! blur_filter th=0.2 ! object_detector path=/models/qr_code ! or.

(a) Relatively sequential

Blur filter

(th=0.2)

Face detector

(min_size=10)

Similar frame dropper

(th = 0.25)

OR

operator

AND

operator

AND

operator

Input Frames Demuxer

gst-launch input ! demuxer name=dmx ! similar_frame_dropper th=0.25 ! and_operator name=and2

 dmx. ! face_detector min_size=10 ! or_operator name=or ! and2.

 dmx. ! blur_filter th=0.2 ! and_operator name=and1 ! or.

 dmx. ! object_detector path=/models/qr_code ! and1.

Object detector
(path=

/models/qr_code)

(b) Fully parallel

Figure 16: Example of declarative APIs and corre-
sponding diagrams

adapted for specifying complex offload shaping policies. In
addition to a programmatic interface, it has a declarative,
text-based configuration language that lets us launch a set
of components, express a graph of how they connect, and
provide configuration strings for individual components if
desired. Finally, the GStreamer framework is supported on
all major operating systems, including Android and iOS.

Figure 16(a) shows an example of a complex offload-shaping
strategy expressed with the GStreamer framework. Here,
frames are first filtered based on similarity, and of those that
pass, only frames with faces or non-blurry QR codes are ul-
timately transmitted from the device. To accomplish this,
we need to create a library of new GStreamer components
that implement the individual offload-shaping algorithms.
We also need to implement logical AND / OR filters, as
GStreamer has no such concepts. In addition, to keep the
branches of a pipeline in sync, we replace dropped frames
with small placeholders. The example also shows how com-
ponents can be configured, using simple short strings. For
more complex configuration, such as object models, we rely
on configuring with paths or URLs to the needed data.

This declarative API is also quite flexible. Figure 16(b)
shows how to express the same policy in a more parallel fash-
ion. On a mobile device that has multiple cores or parallel
sets of hardware accelerators, this version could be executed
with lower latency, as the main tasks are run in parallel. Of
course, this results in additional processing for frames that
would have been dropped early in the sequential pipeline.
The trade-off between response time and mobile resource
use can be tailored to each specific application.

The GStreamer API helps us compose multiple filters in
a configurable way. Such filters might be thin wrappers
around existing libraries or more complicated context-specific
filters implemented as custom code. Applications can dis-
tribute these filters as dynamic libraries, and could upload
them to a central archive for downloading, much as multime-
dia CODECs are handled today. We also imagine that the
most commonly-used filters will be pre-installed on mobile
devices in the future and ready to use for offload shaping.

7. Conclusion
Offload shaping demonstrates that judicious use of ad-

ditional computation on a mobile device can significantly
improve resource usage in an offload system. Offload shap-
ing improves cloud offloading by combining the use of hints
to speed up computations with the concept of early dis-
card [13]. The on-board sensors and computing power of
mobile devices make it possible to achieve accurate early
discard. In this paper, we explore various approaches to
dropping low-value input data without sacrificing applica-
tion fidelity. Such approaches can save significant resources
on mobile devices, including processing time, network band-
width, and energy. They also improve scalability of the back-
end server, reducing inbound traffic and workload.

Offload shaping is generally valuable to a wide range of
applications. Our proposed API allows individual applica-
tions to tailor a shaping strategy to their specific needs. We
will explore how various applications benefit from this API
in future work. This API is extensible, allowing applica-
tions to incorporate new sources of hints such as GPS co-
ordinates, barometric pressure readings, and camera meta-
data. As mobile platforms become more capable, with addi-
tional sensors and hardware-accelerated processing, offload
shaping will become an increasingly powerful tool enabling
energy-efficient cloud and cloudlet offload.

Acknowledgements
We wish to thank Rahul Sukthankar and Rajen Bhatt for
their insights and guidance on various aspects of this re-
search. This research was supported by the National Sci-
ence Foundation (NSF) under grant number IIS-1065336, by
an Intel Science and Technology Center grant, by DARPA
Contract No. FA8650-11-C-7190, and by the Department of
Defense (DoD) under Contract No. FA8721-05-C-0003 for
the operation of the Software Engineering Institute (SEI),
a federally funded research and development center. This
material has been approved for public release and unlimited
distribution (DM-0000276). Additional support was pro-
vided by IBM, Google, Bosch, Vodafone, and the Conklin
Kistler family fund. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and should not be attributed to their employers or
funding sources.

8. REFERENCES
[1] GStreamer: open source multimedia framework.

http://gstreamer.freedesktop.org/, 2014.
[2] Issue 512: Bluetooth connection interfering with TCP

Traffic on WiFi. https://code.google.com/p/
google-glass-api/issues/detail?id=512, May 2014.

[3] R. Balan, M. Satyanarayanan, T. Okoshi, and S. Park.
Tactics-based Remote Execution for Mobile Computing. In

Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services, San Francisco, CA,
May 2003.

[4] A. Collet, M. Martinez, and S. S. Srinivasa. The MOPED
framework: Object Recognition and Pose Estimation for
Manipulation. The International Journal of Robotics
Research, 2011.

[5] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
Smartphones Last Longer with Code Offload. In
Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services, San Francisco, CA,
June 2010.

[6] J. Flinn. Cyber Foraging: Bridging Mobile and Cloud
Computing via Opportunistic Offload. Morgan & Claypool
Publishers, 2012.

[7] J. Flinn, D. Narayanan, and M. Satyanarayanan.
Self-Tuned Remote Execution for Pervasive Computing. In
Proceedings of the 8th IEEE Workshop on Hot Topics in
Operating Systems, Schloss Elmau, Germany, May 2001.

[8] J. Flinn, S. Park, and M. Satyanarayanan. Balancing
Performance, Energy Conservation and Application Quality
in Pervasive Computing. In Proceedings of the 22nd
International Conference on Distributed Computing
Systems, Vienna, Austria, July 2002.

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code Offload by Migrating Execution
Transparently. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12),
Hollywood, CA, October 2012.

[10] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assistance.
In Proceedings of the 12th annual international conference
on Mobile systems, applications, and services, Bretton
Woods, NH, June 2014.

[11] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies,
and M. Satyanarayanan. The Impact of Mobile Multimedia
Applications on Data Center Consolidation. In Proceedings
of the IEEE International Conference on Cloud
Engineering, San Francisco, CA, March 2013.

[12] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank. A survey
on visual content-based video indexing and retrieval.
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 41(6):797–819, 2011.

[13] L. Huston, R. Sukthankar, R. Wickremesinghe,
M. Satyanarayanan, G. R. Ganger, E. Riedel, and
A. Ailamaki. Diamond: A storage architecture for early
discard in interactive search. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies, San
Francisco, CA, March 2004.

[14] S. S. Kozat, R. Venkatesan, and M. K. Mihçak. Robust
perceptual image hashing via matrix invariants. In Image
Processing, 2004. ICIP’04. 2004 International Conference
on, volume 5, pages 3443–3446. IEEE, 2004.

[15] V. Monga and B. L. Evans. Perceptual image hashing via
feature points: performance evaluation and tradeoffs. Image
Processing, IEEE Transactions on, 15(11):3452–3465, 2006.

[16] M. Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications, 8(4), 2001.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Computing, 8(4):3 (Sidebar: “Help for the
Mentally Challenged”), October-December 2009.

[18] I. Sobel and G. Feldman. A 3x3 isotropic gradient operator
for image processing. A talk at the Stanford Artificial
Intelligence Project, 1968.

[19] R. Szeliski. Computer Vision: Algorithms and
Applications. Springer, 2010.

[20] C. Zauner. Implementation and benchmarking of perceptual
image hash functions. PhD thesis, University of Applied
Sciences Hagenberg, Austria, 2010.

