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Abstract

In most real-world (electronic) marketplaces, there
are other considerations besides maximizing imme-
diate economic value. We present a sound way
of taking such considerations into account via side
constraints and non-price attributes. Side con-
straints have a significant impact on the complexity
of market clearing. Budget constraints, a limit on
the number of winners, andXOR-constraints make
even noncombinatorial marketsNP-complete to
clear. The latter two make marketsNP-complete
to clear even if bids can be accepted partially. This
is surprising since, as we show, even combinatorial
markets with a host of very similar side constraints
can be cleared in polytime. An extreme equal-
ity constraint makes combinatorial markets poly-
time clearable even if bids have to be accepted en-
tirely or not at all. Finally, we present a way to
take into account additional attributes using a bid
re-weighting scheme, and prove that it does not
change the complexity of clearing. All of the re-
sults hold for auctions as well as exchanges, with
and without free disposal.

1 Introduction
For a long time in the AI community, auctions and ex-
changes have been proposed as mechanisms for allocating
items (resources, tasks, etc.) in multiagent systems consist-
ing of self-interested parties. Some of the market mecha-
nisms that lead to economically efficient outcomes among
the parties are computationally complex to clear. In par-
ticular, there has been a recent surge of interest in algo-
rithms for clearing auctions where bids can be submitted
on combinations of items[8; 9; 1; 4; 10; 11; 3; 15; 5; 12;
13]. To our knowledge, all of that literature has focused
on clearing combinatorial auctions so as to maximize un-
constrained economic value. In most real-world market-
places, especially in business-to-business commerce, there
are other considerations besides maximizing immediate eco-
nomic value that must be taken into account.

In this paper we introduce and analyze two methods for in-
corporating these additional considerations: side constraints
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on the trading outcome, and bid re-weighting with multivari-
ate functions to include non-price attributes. In short, our
goal is to develop market designs that are computationally
tractable to clear, and where true economic value is maxi-
mized, taking into account all the pertinent constraints and
attributes of the market. The side constraints could be im-
posed by any party: the buyer(s), the seller(s), the party who
executes the marketplace, the party who develops the tech-
nology for clearing the market, a regulatory body such as the
SEC, liquidity providers (such asmarket makerson the NAS-
DAQ or specialistson the NYSE), etc. Similarly, the set of
pertinent attributes and their values could be specified by any
party.

The prior literature has focused on the settings where bids
must be accepted as a whole or rejected, while we also cover
the important practical setting where bids can be partially ac-
cepted. The literature has also focused on settings withfree
disposal(sellers can keep any item and/or buyers can take
extra units of any item). We analyze markets both with and
without free disposal.

We first discuss side constraints in markets where bids are
on individual items, and then move to markets where bids can
be submitted on combinations of items. Finally, we show how
to integrate non-price attributes into (combinatorial) market
designs.

2 Singleton Bids
In this section we show that certain practical side constraints
can make even noncombinatorial auctions hard to clear.

Definition 1 (WDP) The seller hasm items (one unit each)
to sell. Each bidder places a set of bids on individual items.
Thewinner determination problem (WDP)is to determine a
revenue-maximizing allocation of items to bidders.

In the absence of side constraints, WDP can be solved in poly-
time by picking the highest bid for each item independently.
The budget constraint below illustrates how sharp theP vs.
NP-complete cutoff is in the space of side constraints. This
is especially surprising since a similar constraint, where the
number of items sold to each bidderis constrained, leads to a
WDP that was recently shown to be polytime solvable using
b-matching[15].1

1Multi-item auctions (with bids on individual items only) with
certain types of structural side constraints are also solvable in poly-
time using b-matching[6].



Definition 2 (BUDGET) WDP where the amount sold to
any bidder does not exceed her budget.2

Theorem 2.1 BUDGET isNP-complete (whether or not the
seller has to sell all the items), even with integer prices.

PROOF. We reduce PARTITION[2] to BUDGET. In PAR-
TITION, we have a set of integersS = fx1; x2; : : : ; xng,
and the goal is to partitionS into two subsetsA andB (i.e.
A \ B = ; andA [ B = S) s.t.

z =
X

i2A

xi =
X

i2B

xi;

wherez = 1

2

P
x2S x. We create an instance of BUDGET

as follows. Corresponding to eachxi, we create an itemi.
There are two bidders, say, Andy and Bob; each places the bid
of same price,xi, for item i. The budget for Andy and Bob
each isz (half of the total). This instance of BUDGET has a
solution with revenue2z if and only if the original partition
problem has a partition. 2

If bids can be accepted partially, BUDGET can be solved
in polytime using linear programming.

Another practical side constraint is the number of winners.
For example, the seller may not want the overhead of dealing
with a large number of winning bidders.

Definition 3 (MAX-WINNERS) WDP where at mostk bid-
ders receive items.

Theorem 2.2 MAX-WINNERS isNP-complete (whether or
not the seller has to sell all the items), even with integer
prices.

PROOF. We reduce SET-COVER[2] to MAX-WINNERS.
Given an instance of set cover, namely, a ground setX =
f1; 2; : : : ;mg, and a set of subsetsF = fS1; S2; : : : ; Sng,
where Si � X , we formulate an instance of MAX-
WINNERS as follows. We create an itemi for each elementi
in the ground setX . Corresponding to each setSi, we create
a bidderBi, who places a $1 bid on each item in the setSi.

We claim that there is a set cover of sizek if and only if
the auction has a solution with revenuem and max number
of winnersk.

� [)] Consider a feasible solution for the auction. We
claim that the sets corresponding to thek winning bid-
ders form a set cover. (That is, if bidderi receives at least
one item, then we put the setSi in the cover.) Since the
revenue ism, each item must be awarded to some bidder,
and hence it must be covered by the set cover.

� [(] Consider a solution to the set cover. For each set
Si in the cover, we make bidderi a winner. Since each
item is covered in the set cover, each item is bid upon by
at least one bidder in the just constructed winning set,
but the item may be claimed by more than one winning
bidders. However, since each bid is for the same price,
we can arbitrarily award the item to any of the winning
bidders claiming this item. This gives a solution to the
auction problem with revenuem and number of winning
biddersk. 2

2Budget constraints occur naturally in markets, and they have
been studied from thebiddingperspective in the literature before[7].

In many problems, allowing the decision variables to be
continuous instead of binary causes the problem to become
polytime solvable. For example, the KNAPSACK prob-
lem [2] becomes trivial to solve optimally if packages can
be included partially (simply accept packages in descending
value-to-weight order, the last one partially). However, the
MAX-WINNERS problem remains hard:

Theorem 2.3 Even if bids can be accepted partially, MAX-
WINNERS isNP-complete (whether or not the seller has to
sell all the items), even with integer prices.

PROOF. The reduction used to prove Theorem 2.2 applies.
Whenever a bid is accepted even partially, the corresponding
set is included in the cover. 2

In some settings, a bidder may want to submit bids on mul-
tiple items, but may want to mutually exclude some of the
items. For example, a buyer may want to buy a VCR and a
TV, and either of two TVs (but not both) would be accept-
able. She could express this by placing bids on each of the
three items, but inserting anXOR-constraint between the bids
on the TVs.

Definition 4 (XORS) WDP with XOR-constraints. When-
ever two bids are combined withXOR, at most one of them
can win.

Theorem 2.4 XORS isNP-complete (whether or not the
seller has to sell all the items), even with integer prices.

PROOF. We reduce INDEPENDENT-SET[2] to XORS. Cor-
responding to each vertex, generate an item and a $1 bid
for that item. Corresponding to each edge, insert anXOR-
constraint between the bids. Now, XORS has a solution of $k
iff there is an independent set of sizek. 2

Theorem 2.5 Even if bids can be accepted partially, XORS
isNP-complete (whether or not the seller has to sell all the
items), even with integer prices.

PROOF. The proof of Theorem 2.4 applies. Whenever a
bid is partially accepted in an auction, it might as well be
completely accepted since its neighbors are not accepted any-
way. 2

3 Combinatorial Bidding and Asking
In this section we define combinatorial auctions and multi-
unit combinatorial exchanges. In the next section we show
how side constraints affect the complexity of clearing these
markets.

3.1 Combinatorial Auctions
In a combinatorial auction (CA), bidders may submit bids on
combinations of items. This allows the bidders to express the
fact that the value of a bundle of items may differ from the
sum of the values of the individual items that constitute the
bundle.

Definition 5 (CAWDP) The auctioneer has a set of items,
M = f1; 2; : : : ;mg, to sell, and the buyers submit a set of
bids,B = fB1; B2; : : : ; Bng. A bid is a tupleBj = hSj ; pji,
whereSj � M is a set of items andpj , pj � 0 is a
price. Thecombinatorial auction winner determination prob-
lem (CAWDP) is to label the bids as winning or losing so



as to maximize the auctioneer’s revenue under the constraint
that each item can be allocated to at most one bidder:

max

nX

j=1

pjxj s.t.
X

jji2Sj

xj � 1 i = 1; 2; : : : ;m

If there is no free disposal (auctioneer is not willing to keep
any of the items, and bidders are not willing to take extra
items), an equality is used in place of the inequality.

Definition 6 (BCAWDP) Binary CAWDP: CAWDP where
the decision variables are binary (xj 2 f0; 1g, i.e., each bid
has to be completely accepted or not at all).

Even with free disposal and integer prices, BCAWDP isNP-
complete[8], and it cannot even be approximated to a ratio of
n1�� in polytime (unlessP = NP) [9].

Definition 7 (CCAWDP) Continuous CAWDP:
CAWDP where the decision variables are continuous (0 �

xj � 1, i.e., bids can be accepted partially).

CCAWDP is directly solvable by linear programming in poly-
time. While academic research on clearing combinatorial
auctions has focused on the binary case[8; 9; 1; 10; 11; 15;
3; 5], the currently biggest real combinatorial markets are
continuous. For example, whenlogistics.com auctions
long-term trucking lanes (the volume of each lane is numer-
ous truck-loads), carriers can bid on combinations of lanes,
and bids can be accepted partially. Also, in theBondCon-
nect combinatorial bond exchange, bids can be accepted
partially.

3.2 Combinatorial Reverse Auctions
Next we introduce a combinatorial reverse auction.

Definition 8 (CRAWDP) The buyer wants to obtain a set
of items,M = f1; 2; : : : ;mg, and the sellers submit a set
of asks,B = fB1; B2; : : : ; Bng. An ask is a tupleBj =
hSj ; pji, whereSj � M is a set of items andpj , pj � 0
is an asking price. Thecombinatorial reverse auction win-
ner determination problem (CRAWDP)is to label the asks as
winning or losing so as to minimize the buyer’s cost under the
constraint that the buyer obtains each item:

min

nX

j=1

pjxj s.t.
X

jji2Sj

xj � 1 i = 1; 2; : : : ;m

If there is no free disposal (the buyer cannot take extra units
and sellers cannot keep any of the items of their winning
asks), an equality is used in place of the inequality.

Definition 9 (BCRAWDP) Binary CRAWDP: CRAWDP
where the decision variables are binary (xj 2 f0; 1g, i.e.,
each ask has to be completely accepted or not at all).

Proposition 3.1 BCRAWDP isNP-complete, even with free
disposal.

PROOF. BCRAWDP with free disposal is equivalent to
weighted set covering, which isNP-complete. 2

Definition 10 (CCRAWDP) Continuous
CRAWDP: CRAWDP where the decision variables are con-
tinuous (0 � xj � 1, i.e., asks can be accepted partially).

CCRAWDP is directly solvable by linear programming in
polytime.

3.3 Multi-Unit Combinatorial Exchanges
In a multi-unit combinatorial exchange, both buyers and sell-
ers can submit combinatorial bids, and in one bid, a bidder
might be selling units of some items and buying units of other
items[10; 11].
Definition 11 (MUCEWDP) A bid in this setting isBj =
h(�1j ; �

2
j ; : : : �

m
j ); pji, where�kj 2 < is the requested number

of units of itemk, andpj 2 < is the price. A positive�kj
represents buying and a negative�kj means selling. A posi-
tive pj represents bidding while a negativepj means asking.
Themulti-unit combinatorial exchange winner determination
problem (MUCEWDP)is to label the bids as winning or los-
ing so as to maximize surplus under the constraint that de-
mand does not exceed supply:

max

nX

j=1

pjxj s.t.
nX

j=1

�ijxj � 0 i = 1; 2; : : : ;m

If there is no free disposal (buyers are not willing to take extra
units, and sellers are not willing to keep any units of their
winning bids), an equality is used in place of the inequality.
Definition 12 (BMUCEWDP) Binary
MUCEWDP: MUCEWDP where the decision variables are
binary (xj 2 f0; 1g, i.e., each bid has to be completely ac-
cepted or not at all).
Proposition 3.2 BMUCEWDP isNP-complete (with and
without free disposal), even with integer prices and units. It
is also inapproximable in polynomial time (unlessP = NP).
PROOF. BCAWDP is a special case of BMUCEWDP. 2

Definition 13 (CMUCEWDP) Continuous
MUCEWDP: MUCEWDP where the decision variables are
continuous (0 � xj � 1, i.e., bids and asks can be accepted
partially).
CMUCEWDP is directly solvable by linear programming in
polytime.

3.4 Spanning the Spectrum of Combinatorial
Market Designs

In the next section we analyze the complexity of winner de-
termination under different side constraints. We present the
positive results in the context of the most general combinato-
rial market design (MUCEWDP). They therefore apply to all
special cases of it as well, such as CAWDP and CRAWDP.
We present the negative results in the context of CAWDP and
CRAWDP. They therefore apply to all generalizations thereof
as well, such as MUCEWDP.

4 Side Constraints in Combinatorial Markets
In this section we discuss how the complexity of clearing a
combinatorial market changes as different types of side con-
straints are imposed on the outcome. It turns out that different
side constraints introduce sharp cutoffs in the complexity of
clearing. Seemingly similar side constraints lead to problems
that lie on different sides of theP vs. NP-complete cutoff.
In the first subsection we present side constraints under which
the continuous case remains easy and the binary case remains
hard. In the next subsection we present side constraints that
make both cases hard. In the last subsection we present a side
constraint that make both cases easy.



4.1 Side Constraints under which the Continuous
Case Remains Easy, and the Binary Case
Remains Hard

The following classes of domain-independent side con-
straints, which we view as practically important and quite
general, turn out to be easy for the continuous winner deter-
mination problem, and remain hard for the binary case. The
constraint classes may seem cumbersome. That is because we
focused on making them as general as possible. Each con-
straint class encompasses several types of simpler practical
constraints, as we will discuss via examples.

The constraints use the following terminology. Let the
net revenue (NR)of a set of bidsX be�

P
j2X pjxj (bids

decrease NR, but asks increase NR because the prices are
negative). Let thegross revenue (GR)of a set of bidsX
be
P

j2X jpj jxj (both bids and asks increase GR). Let the
net units (NU)of a set of bidsX and set of itemsY beP

j2X

P
i2Y �ijxj (units bought increase NU but units sold

are negative, so they decrease NU). Let thegross units (GU)
of a set of bidsX and set of itemsY be

P
j2X

P
i2Y j�

i
j jxj

(units bought and sold increase GU). Roughly, the gross terms
measure market share and the net terms measure property ob-
tained. The revenue terms measure these in money received,
while the unit terms measure these in goods received. On all
four terms, each player prefers a high value.

Maximum trade constraints:
1. MAX-SUBSET-NET-REVENUE: Of a certain set of

bidsB0 � B (for example, by a certain player or by a
set of players), NR� $k. For example, this can be used
to enforce that a seller does not get a net revenue that is
obscenely high (which could be considered out of line).

2. %MAX-SUBSET-NET-REVENUE: Of a certain set of
bidsB0 � B (for example, by a certain player or by a set
of players), NR cannot exceedk% of the NR from set
B00 � B. A current large-scale real-world market that
runs combinatorial auctions has to guarantee that 30%
of the dollar value of the awarded bids goes to minority
bidders. This could be implemented using the %MAX-
SUBSET-NET-REVENUE constraint (because revenues
of buyers are nonpositive). As another example, to main-
tain fairness, a buyer in a reverse auction may not want
any seller to get more than a certain fraction of the rev-
enue that the market generates.

3. MAX-SUBSET-GROSS-REVENUE: Of a certain set of
bidsB0 � B (for example, by a certain player or by a set
of players), GR� $k. This can be used, for example,
to guarantee that a certain class of buyers gets a certain
dollar volume of a market.

4. %MAX-SUBSET-GROSS-REVENUE: Of a certain set
of bidsB0 � B (for example, by a certain player or by a
set of players), GR cannot exceedk% of the GR from set
B00 � B. This can be used, for example, to guarantee a
certain class of buyers a given percentage of the market
share. That allows the marketplace to enforcediversity
on the buyer side, which may hedge against risks such
as failure to pay.

5. MAX-SUBSET-NET-UNITS: Of a certain set of bids
B0 � B (for example, by a certain player or by a set of

players), and a certain set of itemsM 0 � M , NU � k.
This can be used, for example, to ensure that no buyer
gets an obscenely large number of units, or to guarantee
that a seller gets to sell at least a certain number of units
of some items.

6. %MAX-SUBSET-NET-UNITS: Of a certain set of bids
B0 � B (for example, by a certain player or by a set
of players), and a certain set of itemsM 0 � M , NU
cannot exceedk% the NU of itemsM 00 � M from bid
setB00 � B. This can be used, for example, to ensure
that no buyer gets an obscenely large fraction of units,
or to guarantee that a seller gets to sell at least a certain
fraction of units.

7. MAX-SUBSET-GROSS-UNITS: Of a certain set of bids
B0 � B (for example, by a certain player or by a set
of players), and a certain set of itemsM 0 � M , GU
� k. For example, this can be used in an exchange to
guarantee a maximum trading volume to a buyer, or a
minimum for a seller.

8. %MAX-SUBSET-GROSS-UNITS: Of a certain set of
bidsB0 � B (for example, by a certain player or by a
set of players), and a certain set of itemsM 0 � M , GU
cannot exceedk% of the GU of itemsM 00 � M from
bid setB00 � B. For example, this can be used in an
exchange to guarantee a maximum fraction of trading
volume to a buyer, or a minimum for a seller.

Minimum trade constraints:
1. An analogous MIN-constraint to each of the eight MAX-

constraints above can be derived directly by turning
the inequality around. For example, a buyer with a
budget constraint is a special case of MIN-SUBSET-
NET-REVENUE. For a more general example of MIN-
SUBSET-NET-REVENUE, consider a firm that bids on
behalf of its different business units, and each business
unit has its own purchasing budget that cannot be ex-
ceeded. This would induce one constraint per business
unit. The MIN-SUBSET-NET-REVENUE constraint
can also be used to guarantee that a seller gets at least
a certain net revenue.
As another example, the %MIN-SUBSET-GROSS-
REVENUE constraint could be used to enforce that a
certain set of sellers gets at least a given fraction of the
market share. Placing such constraints allows the mar-
ketplace to enforcediversity on the seller side, which
may hedge against risks such as nondelivery. It could
also be used to guarantee that one player does not get
more than twice the volume of another player.

Minimum mutual trade constraints:
1. MUTUAL-TRADE: SetA of sellers of itemi must sell

to setB of buyers ofi at leastk units of i. One of the
main arguments against dynamic pricing has been the
desirability of stable long-term business relationships
with trade volume guarantees. The MUTUAL-TRADE
constraint allows that concern to be incorporated into a
dynamically-priced marketplace. This enables the par-
ticipants to capture the advantages of both long-term
business guarantees and dynamic pricing.



2. %MUTUAL-TRADE: SetA of sellers of itemi must
sell to setB of buyers ofi at leastk% of the units of
item i sold by setC of sellers (C may be a subset ofA,
a superset ofA, intersect withA, or be disjoint fromA).
The motivation is the same as for MUTUAL-TRADE.
(If C is the set of all sellers, then this constraint forces
a certain fraction of the trade on itemi to be conducted
directly betweenA andB.) 3

Minimum constraints on trading on all items:
1. TRADE-ON-ALL-ITEMS: The items in setM 0 � M

have to trade a total of at leastk units.

2. %TRADE-ON-ALL-ITEMS: The items in setM 0 �M
have to trade a total of at leastk% of the units traded of
some other set of itemsM 00 �M .

MAX/MIN constraints on acceptance ratio:
1. MAX-SUBSET-ACCEPTANCE-RATIO: Of a certain

setB0 � B of bids and asks (for example, by a certain
bidder or by a set of bidders), at most a certain ratio can

be accepted:

P
jjBj2B

0 xj

jB0j
� k%.

2. MIN-SUBSET-ACCEPTANCE-RATIO: Of a certain set
B0 � B of bids and asks (for example, by a certain bid-
der or by a set of bidders), at least a certain ratio has to be
accepted. This could be used to mitigate the frustration
of losing, and to induce more bidding.

The remaining constraints are equalities. They are de-
signed to enforce strong forms of fairness among the market
participants in terms of equitable allocation. The equalities
can be taken among buyers, among sellers, or across buyers
and sellers (and some players may both buy and sell—even in
the same bid). As is, comparing the net measures across buy-
ers and sellers only makes sense in a barter economy since
the net measures for those two sets generally have different
signs. This can be generalized directly by comparing abso-
lute values of the net measures. The theorems in this section
apply to that case as well.

General equality constraints on trading volume:
1. EQUAL-SUBSET-NET-REVENUE: Of a certain set of

bids B0 � B (for example, by a certain bidder or by
a set of bidders), NR equals the NR of another bid set
B00 � B.

2. EQUAL-SUBSET-GROSS-REVENUE: Of a certain set
of bidsB0 � B (for example, by a certain bidder or by
a set of bidders), GR equals the GR of another bid set
B00 � B.

3. EQUAL-SUBSET-NET-UNITS: Of a certain set of bids
B0 � B (for example, by a certain bidder or by a set of
bidders), and a certain set of itemsM 0 �M , NU equals
the NU of another bid setB00 � B.

3Under the mutual business constraints, the resulting allocation
ensures that it is possible to have the desired amount of trade be-
tweenA andB. However, the basic market mechanism only says
how much each party trades, not with whom. A postprocessor can
be used to enforce that the minimum desired amount of trade is con-
ducted betweenA andB directly.

4. EQUAL-SUBSET-GROSS-UNITS: Of a certain set of
bidsB0 � B (for example, by a certain bidder or by a
set of bidders), and a certain set of itemsM 0 � M , GU
equals the GU of another bid setB00 � B.

Strict equality constraints on trading volume:
1. EQUAL-NET-REVENUE: Each bidder gets equal NR.

2. EQUAL-GROSS-REVENUE: Each bidder gets equal
GR.

3. EQUAL-NET-UNITS: Each bidder gets equal NU on a
given set of itemsM 0 �M .

4. EQUAL-GROSS-UNITS: Each bidder gets equal GU on
a given set of itemsM 0 �M .

Strict equality constraints on acceptance ratio:
1. EQUAL-NET-REVENUE-

ACCEPTANCE-RATIO: Every bidder gets awarded the
same ratio of the net revenue of her bids (NR / NR as if
all her bids got accepted).4

2. EQUAL-GROSS-REVENUE-ACCEPTANCE-RATIO:
Every bidder gets awarded the same ratio of the gross
revenue of her bids (GR / GR as if all her bids got ac-
cepted).

3. EQUAL-NET-UNITS-ACCEPTANCE-RATIO: Ev-
ery bidder gets awarded the same ratio of the net units
of her bids (NU / NU as if all her bids got accepted) on
a given set of itemsM 0 �M .

4. EQUAL-GROSS-UNITS-ACCEPTANCE-RATIO: Ev-
ery bidder gets awarded the same ratio of the gross units
of her bids (GU / GU as if all her bids got accepted) on
a given set of itemsM 0 �M .

In the constraints above, when NR, GR, NU, and GU com-
parisons are made, they are made within the same type (e.g.,
NU against NU). The following theorems would apply to con-
straints where comparisons are made across these types as
well (although we believe that such constraints are less likely
to be of relevance in practice). Furthermore, they would ap-
ply to constraints on the difference between the gross and net
measures, as well as to constraints on the ratio of the gross
and net measures.

Theorem 4.1 BCAWDP (and CRAWDP) with constraints
from any of the classes presented in this section isNP-
complete (with and without free disposal), even with integer
prices.

PROOF. By appropriately picking the parameters for the
MAX and MIN constraints, they can be relaxed so they do not
constrain the set of feasible allocations. BCAWDP with such
constraints is therefore rich enough to emulate BCAWDP it-
self, which isNP-complete.

To see that BCAWDP with the equality constraints isNP-
complete, consider a CA with just one bidder. The equalities
do not bind, but the problem still is weighted set packing,
which isNP-complete. 2

4These four constraints can sometimes be too strong in the sense
that a player’s own bid can preclude the acceptance of some of her
other bids because her bids share items.



Theorem 4.2 CMUCEWDP with constraints from any of the
classes presented in this section is polytime solvable (with
and without free disposal).

PROOF. Each constraint from any one of these classes can
be modeled as one row (constraint) that is added to the linear
program (we skip these encodings due to restricted space, but
they are not extremely hard to construct). The resulting linear
program is therefore of polynomial size in the size of the in-
put. Linear programs can be solved in polynomial time in the
size of the linear program (using interior point methods).2

4.2 Side Constraints under which the Continuous
and Binary Case Are Hard

The most interesting results of this paper show that some
classes of side constraints that are among the most important
ones from a practical perspective, make even the continuous
caseNP-complete to clear.

Theorem 4.3 If no more than k winners are allowed,
BCAWDP and CCAWDP (as well as BCRAWDP and
CCRAWDP) areNP-complete (with and without free dis-
posal), even if prices are integer.

PROOF. By Theorems 2.2 and 2.3, even the special case
where the bids are all on singletons isNP-complete. 2

In a combinatorial auction where the bids are combined
with OR, a bidder can only express complementarity, not sub-
stitutability. For example, say a bidder has submitted three
bids: hf1g; $4i, hf2g; $5i, andhf1; 2g; $7i. Now the auction-
eer can allocate items 1 and 2 to the bidder for $9. To allow
bidders to express any valuationv : 2M ! f<+ [ 0g, it was
proposed that bidders can submitXOR-constraints between
bids [9]. If two bids are combined with anXOR-constraint,
only one of them can win.5 It turns out that in the contin-
uous case, there is an inherent tradeoff between the full ex-
pressiveness ofXOR-constraints and computational complex-
ity (recall that in the binary case, CAWDP isNP-complete
even withoutXOR-constraints):

Theorem 4.4 If XOR-constraints are allowed between bids,
BCAWDP and CCAWDP (as well as BCRAWDP and
CCRAWDP) areNP-complete (with and without free dis-
posal), even if prices are integer.

PROOF. By Theorems 2.4 and 2.5, even the special case
where the bids are all on singletons isNP-complete. 2

It follows that winner determination under the other fully
expressive bidding languages that have been proposed for
combinatorial auctions (which are generalizations of the
XORS language) - OR-of-XORs[10] and XOR-of-ORs[5]
- is NP-complete even in the continuous case. The widely
advocated idea of expressing mutual exclusion among bids
via dummy items that the bids share[1; 5], does not lead to
a fully expressive bidding language at all in the continuous
case (because the dummy items may be partially allocated to
different bids).

5In addition to allowing full expressiveness to the bidders,XOR-
constraints can be a useful tool for the auctioneer. For example, they
can be used to encode that rival bidders cannot both be winners (by
inserting anXOR-constraint from each of the bidder’s bids to each
of the rival’s bids).

The heart of the difficulty with the side constraints of this
section is that they would require a bid to be “counted” even
if it is accepted only partially. As the theorems of this section
entail, such a counting device cannot be encoded into a linear
program (of polynomial size) unlessP = NP .

4.3 Side Constraint under which the Continuous
and Binary Case Are Easy

As we show in this section, some side constraints restrict
the space of feasible allocations so dramatically that the win-
ner determination problem becomes easy even for the binary
case. Currently we are not aware of any constraints in this
class that would be of great practical interest, but the follow-
ing artificial constraint serves as an existence proof.

Definition 14 (EXTREME-EQUALITY) Each bid and ask
has to be accepted to the same extent:8j; xj=x.

Theorem 4.5 CMUCEWDP and BMUCEWDP are polytime
solvable under EXTREME-EQUALITY (with and without free
disposal).

PROOF. The continuous case is directly solvable by linear
programming. In the binary case, simply try accepting all
offers (x = 1) and rejecting them (x = 0). 2

5 Hybridizing Combinatorial and
Multi-Attribute Market Designs

There are at least two reasons for introducing multi-attribute
techniques into (combinatorial) markets. First, in a basic auc-
tion (or reverse auction or exchange), each item has to be
completely specified. In many settings, this is overly restric-
tive. It would be more desirable to leave some of the param-
eters of the items open, so that each player could propose in
her bids the most suitable parameter combinations for her,
such as delivery date, quality, insurance, etc. (each player
could also specify different parameter combinations in differ-
ent bids). This would avoid the problem of having to enumer-
ate alternative parameter combinations as separate items up
front. Second, a bid from one bidder can be more desirable
than the same bid from another bidder (e.g., due to historical
data on timeliness and quality of different bidders).

Multi-attribute utility theory is a tool for handling trade-
offs between different attributes, and computerized imple-
mentations of it for automated negotiation have been de-
veloped over the last 15 years (see, for example,[14; 16]).
Recently, several companies have been founded to com-
mercialize that technology:Frictionless Commerce ,
BizBots , Perfect , etc. However, to our knowledge,
multiattribute and combinatorial markets have not been hy-
bridized in the literature so far. We propose a way to hybridize
them so as to gain the advantages of both.

Consider a (combinatorial) market design such as the ones
discussed in this paper so far. Let~aj be a vector of the ad-
ditional (non-price) attributes. Some of the attributes can
be specific to bidj while others might not (such as quality
of a certain line of products). The vector can include at-
tributes revealed by the bidder as well as attributes whose
values the recipient gets from other sources such as historical
performance databases. We re-weight the bid prices based
on the additional attributes. The new price of any bidj is



p0j = f(pj ; ~aj). The re-weighting functionf could be de-
termined by any party, but in most markets it would be set
by the recipient of the bids before he receives the bids (or in
some cases even after, but this would, in general, affect the
bidders’ incentives). We then run the winner determination
in the (combinatorial) market using pricesp0.

Theorem 5.1 Whether or notp0 is used (for some of the bids)
in the objective, and whether or notp0 is used (for some of
the bids) in the side constraints, theNP-completeness and
polytime results of this paper still hold.

PROOF. The polytime result hold because any of thep-based
coefficients can be changed top0-based coefficients in the lin-
ear program. TheNP-completeness results hold because the
special casef(pj ; ~aj) = pj isNP-complete. 2

6 Conclusions and Future Research
In most real-world (electronic) marketplaces, there are
other considerations besides maximizing immediate eco-
nomic value. We presented a sound way of taking such con-
siderations into account via side constraints and non-price
attributes. Side constraints have a significant impact on the
complexity of clearing the market. Budget constraints, a limit
on the number of winners, andXOR-constraints make even
noncombinatorial marketsNP-complete to clear. The latter
two make marketsNP-complete to clear even if bids can be
accepted partially. This is surprising since, as we showed,
even combinatorial markets with a host of very similar side
constraints can be cleared in polytime. An extreme equal-
ity constraint makes combinatorial markets polytime clear-
able even if bids have to be accepted entirely or not at all.
Finally, we presented a way to take into account additional
attributes using a bid re-weighting scheme, and proved that it
does not change the complexity of clearing. All of the results
hold for auctions as well as exchanges, with and without free
disposal.

Future research includes analyzing the complexity entailed
by other side constraints. We also hope to design search algo-
rithms that perform well on average onNP-complete clear-
ing problems that include side constraints.
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