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Abstract

Separating the direct and global components of radiance
can aid shape recovery algorithms and can provide useful
information about materials in a scene. Practical methods
for finding the direct and global components use multiple
images captured under varying illumination patterns and
require the scene, light source and camera to remain sta-
tionary during the image acquisition process. In this pa-
per, we develop a motion compensation method that relaxes
this condition and allows direct-global separation to be per-
formed on video sequences of dynamic scenes captured by
moving projector-camera systems. Key to our method is be-
ing able to register frames in a video sequence to each other
in the presence of time varying, high frequency active illu-
mination patterns. We compare our motion compensated
method to alternatives such as single shot separation and
frame interleaving as well as ground truth. We present re-
sults on challenging video sequences that include various
types of motions and deformations in scenes that contain
complex materials like fabric, skin, leaves and wax.

1. Introduction

The radiance of a scene point illuminated by a light
source is the sum of the direct and global components. The
direct component is the light from the source that undergoes
a single reflection in the scene before reaching the observer.
The global component is due to indirect lighting from inter
reflections, subsurface scattering, volumetric scattering and
diffusion. Separating the direct and global components of
illumination provides valuable insights into how light inter-
acts with a scene. Being able to extract the direct compo-
nent of illumination can improve the performance of clas-
sical photometry based algorithms like shape from shading
as well as structured light reconstruction which typically do
not account for global effects. Having access to the two
components separately instead of their sum can also pro-
vide useful information about the physical properties of the
materials present in a scene.

An efficient method for finding the global and direct
components was first proposed in [14]. The method in-
volves capturing images while illuminating the scene with
a sequence of high frequency patterns. Theoretically, only
two images are needed but practical implementations use
atleast three images, with more images leading to better re-
sults. The light source, camera and scene need to remain
stationary during image acquisition. In the same work, a
single image variant of the method that could be used for
moving scenes was also proposed, but it generates low spa-
tial resolution results.

A similar trade-off exists in active illumination to re-
cover geometry. Single shot structured light methods [9]
can be used on dynamic scenes but have low spatial resolu-
tion while multi-image methods [17] produce high quality
depth estimates but require the scene to remain stationary.
There has been work on developing motion compensation
schemes to allow multi-image structured light algorithms to
be applied to dynamic scenes [10, 20]. One approach is
interleaving the projector patterns for structure estimation
with uniformly lighting for motion tracking. Most struc-
tured light algorithms do not account for global illumination
and those that do [3, 5] require many additional images.

In this work, we address motion compensation in the
context of direct-global separation. We develop a method
that relaxes the requirement that the scene and camera re-
main static during direct-global separation. This allows
separation to be performed on video sequences in which
the projector-camera system and/or the scene are moving.
We assume that the underlying global and direct compo-
nents of a scene point vary only slightly over small motions.
This means that if the frames in a temporal window can be
aligned, the separation technique in [!4] can be applied to
the aligned frames. Optical flow techniques can not be used
directly because of the time varying patterns illuminating
the scene. Instead, we use a simple image formation model
to approximate scene appearance under uniform lighting.
We use these relit images to aid alignment and then estimate
the global and direct components from the aligned images.

Compared to single image separation, our method pro-



duces more detailed, higher resolution results. We use all
the frames in a temporal window for estimating the global
and direct components. No frames are used exclusively
for tracking, so our method can handle faster motions than
interleaving at a given frame rate. We use a colocated
projector-camera system which allows us to avoid the diffi-
cult projector-camera pixel correspondence and 3D recon-
struction problem.

We show that our method compensates for motion effec-
tively and generates separation results close to ground truth.
We show that not compensating for motion introduces sig-
nificant artifacts in the separation and compare our method
to alternatives such as single shot separation and interleav-
ing. The scenes we demonstrate our method on contain ma-
terials such as wood, plastics, fabric, wax, leaves and human
skin that interact with light in complex ways. We show that
our method is able to compensate for both rigid motions and
non-rigid deformations in the scene.

1.1. Related Work

The original work on direct-global separation [14] de-
scribes methods for separation using active illumination
and source occluders. With active illumination, the sepa-
ration can be performed using three sinusoid patterns, but
the best results with practical projector-camera systems re-
quire around 20 high frequency pattern images. A method
that uses a single image was also presented, but it generates
results at a fraction of the projector’s resolution which is un-
desirable since most projector-camera systems are projector
resolution limited. In [15] an optical processing method that
can be used to directly acquire the global component of il-
lumination is presented. Global illumination and projector
defocus were modeled jointly in [6] for depth recovery in
scenes with significant global light transport effects. In [4],
the separation technique was extended to scenes illuminated
by multiple controllable light sources. Their goal was to ex-
tract the direct component for each light source to aid struc-
ture recovery techniques where global illumination is often
a severe source of systematic error.

The need for motion compensation also arises in struc-
tured light for 3D estimation. Taguchi et al. [19] developed
structured light patterns that can be decoded both spatially
and temporally which allows for motion adaptation. Sta-
tionary and slow moving regions are decoded temporally
yielding high quality depth estimates and the algorithm falls
back onto spatial decoding in fast moving regions.

In [20] a motion compensation method for the phase shift
structured light algorithm is presented. Motion in the scene
during image acquisition causes high frequency ripples in
the phase estimates which are corrected by modeling the
true phase as a locally linear function.

Motion estimation and compensation in image se-
quences with projected patterns is often done by interleav-

ing the patterns with uniform lighting [21]. A similar ap-
proach is used in the structured light motion compensation
scheme in [10] where patterns for structure estimation are
interleaved with patterns optimized for estimating motion.
Interleaving is a valid approach for our problem, but it in-
creases the number of images that are needed and can intro-
duce registration artifacts if the motion is not smooth.

Most techniques for optical flow are based on brightness
and gradient constancy assumptions. Because we illuminate
the scene with time varying, high frequency patterns, these
assumptions are not valid. Illumination robust optical flow
methods have been designed based on photometric invari-
ants [13] and physical models [8]. Computationally, most
optical flow methods are based on local linearization of im-
ages. Since our images are dominated by the pattern, this
linearization causes problems. An alternative optical flow
formulation was derived in [18] that uses a direct search
to compute optical flow and which can accommodate arbi-
trary data loss terms. We use a variant of this direct search
method to refine our alignments.

1.2. Limitations

We do not model changes in the underlying direct and
global components at a scene point within a small temporal
window. This is generally valid for global effects, diffuse
reflections and smooth gloss reflections but not for sharp
specularities. We assume that there is no blurring of the im-
ages due to motion and that the scene lies completely within
the depth of field of the projector-camera system.

2. Image Formation Model

The brightness I*(x) of a pixel x at time ¢ is a combi-
nation of the direct component [ and global component
I;. When a binary pattern illuminates the scene, the direct
component is modulated by the pattern. If the pattern has
an equal number of bright and dark pixels and has high spa-
tial frequency compared to I?, the contribution of the global
illumination to the brightness is %I ; [14]. Thus we have

I'(z) = 515(2) + 5" () 14(2) M

where, s! is the value of the projected pattern at cam-
era pixel z. We colocate our projector and camera so the
mapping between projector and camera pixels is fixed and
independent of scene geometry. Even though the patterns
are binary, the value of s’ at a pixel can be continuous be-
cause real projectors do not have ideal step responses and
the projector and camera pixels need not be aligned. An
example of the model is illustrated in Figure 1.

For convenience and without loss of generality, we fix
t = 0 to be the current frame, at the center of a temporal
sliding window. As a scene point moves with respect to
the projector and camera, its global and direct components
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Figure 1: Image Formation Model: The observed image I is modeled as a linear combination of the global component (/)
and a projector pattern (s) modulated version of the direct component (I;). I = %I g + sI. The specularities on the candles
appear in the direct image and most of the color is due to subsurface scattering in the wax and appears in the global image.

will change. We assume that the motion within a sliding
window is small enough for these changes to be negligible.
This allows us to relate the global and direct components at
time instant ¢ in the sliding window to time 0

Ig(x) ~ (W' (x))  I3(x) ~ I;(W"(z))

where, W is an (unknown) warping function that aligns
the view at time O to the view at time t. At¢ = 0, W is
just an identity mapping. W depends on the geometry of
the scene and the motion of the scene and projector-camera
system. We use the notation W o I to denote the image that
results from applying warp W to image /.

3. Motion Estimation and Compensation

We compute the direct-global separation at a frame in
the video sequence using a small temporal sliding window
centered at that frame. We seek to compensate for the mo-
tion that occurs inside a temporal sliding window so that the
frames can be aligned to each other. With the help of the
image formation model, we estimate how the scene would
have appeared at each time instant under uniform lighting
instead of the patterned illumination. We use these fully lit
versions of the images to find warps that align the images
and then refine the warps. Once the images are aligned we
can compute the global and direct components robustly.

3.1. Estimating Scene Appearance Under Uniform
Ilumination

Finding the warps that align frames is difficult because
of the time varying pattern being projected onto the scene.
The patterns violate the brightness and contrast constancy
assumptions most optical flow methods rely on. To aid
alignment, we compute an approximation of how the scene
would have appeared (I JE) under uniform illumination from
the frame I* and the pattern s? used to illuminate the scene.
These fully lit estimates are better suited for image align-
ment than the original patterned frames.

Under uniform illumination, the brightness at a pixel is
the sum of two unknowns, the direct component and the
global component I (x) = Ij(x) 4 Ij(x). The two un-
knowns are related by equation 1. The problem is under
constrained and can not be solved uniquely because there
is only one equation for every two unknowns. To find an
approximate solution to the problem, we introduce a regu-
larizer that enforces piecewise spatial continuity of the es-
timated global and direct components (fé and I~fi respec-
tively). The loss function minimized is

L(Ig, I3) = 1" — 315 = s'I§|13 + AgTV (Ig) + ATV (L)

2

where, A\; and )\; are smoothing parameters for the

global and direct components. TV (Z) is the isotropic to-
tal variation of the function Z(x, y).
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For color images, we sum the total variation of each color
channel. This objective function is similar to those used in
L1 regularized image deblurring and denoising [2]. It is
convex in 1, ¢ and I and can be solved efficiently to find a
globally optimal solution. An example of the illumination
pattern removal is shown in Figure 2.

Any high frequency illumination pattern can be used to
perform direct-global separation. We use random bandpass
patterns similar to those used for structure estimation in [3].
The relit images sometimes contain minor artifacts along
the edges in the patterns. These artifacts are caused by pro-
jector blur and small errors in the colocation between the
projector and camera. Using random patterns prevents cor-
relation between these artifacts across time from affecting
the registration process.
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(c) Actual Fully Lit Frame Iy = I, + Ig

Figure 2: Removing the Illumination Pattern: An image captured with a high frequency illumination pattern (a) is relit to
form an estimate (b) of how the scene would have appeared under uniform lighting. For reference, the actual appearance of
the scene under uniform lighting is shown in (c). The relit estimate (b) captures the structure of the scene but smooths over
some of the finer detail that is visible in (c). Relit images are used to perform image alignment on the original images

3.2. Registering Images

To align a frame to the center frame, we could simply
compute optical flow between the relit frames. But for scene
points that are illuminated in both images, it is better for the
warp to match the original image pixel values I°(z) and
I'(x) than the smoothed, relit estimates INJQ(x) and f}(x)
At scene points that are not illuminated or which are illumi-
nated in one frame but not the other, matching the relit esti-
mates is preferable. We implement this idea in two stages.
First, we compute the warping that best aligns I Jtc to ]9 with
variational optical flow [1]. This initial warp estimate is
then refined by minimizing the following cost functional:

CW') =3 (1 - alz,WH)|[I}(z) - [H(W!(2))]

x

+ Y alz, WHI(z) = I'(WH(@)| + 4TV (W) @)

where, a(x, W) is a weight that is high when a point is
lit (s close to 1) in both the center frame I° and the current
frame I. The total variation term is a regularizer to ensure
that the computed warp is piecewise continuous. We set
a(z, W) = (s(z) s (W' (2)) )2 when both s values are
above 0.8 and to 0 otherwise.

The data term in the cost functional does not linearize
well, so we minimize it approximately using the direct
search algorithm proposed in [18]. Because we are seeking
to correct small errors in an existing optical flow estimate
we search for an refined warp at each pixel using a small
window centered around the original warp estimate.

If the motion that occurs in a sliding window is large,
optical flow may fail to correctly align some frames to the
center frame. We detect poorly aligned frames by thresh-
olding the correlation between the warped frame W? o f}

and center frame I ¢. Poorly aligned frames are discarded
from the sliding window.

3.3. Computing Direct-Global Separation

Once the frames in a window have been warped to align
with the center frame, we in effect have a set of images of
the scene captured from the same viewpoint with different
illumination patterns.

If the set of patterns is designed such that it can be guar-
anteed that for each camera pixel there will be at least one
frame where the corresponding projector pixel is fully lit
and another frame where it is fully dark, the separation can
be performed using simple pixel-wise min and max opera-
tions over the frames in the sliding window [14]. Alterna-
tively, since the projector pattern values (s?) at each pixel
are known, the global and direct components can be deter-
mined by fitting a line to the observed brightness values at
a pixel using equation 1. For this line fit to make sense,
each pixel needs to be observed under a range of projector
pattern values.

Since scene structure and motion are not known a pri-
ori, a pattern sequence cannot be designed that is guaran-
teed to satisfy either of the above two criteria. As a result,
there will be pixels in the image where the global and direct
components can not be estimated well because the projector
brightness did not change sufficiently at the corresponding
scene point. We fill in these pixels by extending the idea
of equation 2 to multiple images. We search for piecewise
continuous global and direct components that are a good fit
to the observed aligned image data by minimizing

LI, 19) =Y |[Whol' — 11, — (W'os') IJ|I3
teT
+ ATV (D) + \TV(IS)  (5)

where, T is the sliding window of frames selected about
the center frame. At scene points where a variety of differ-
ent s values were projected, I (2) and I9(x) are estimated
confidently as only a single line fits the data term. At pixels
where the value of s was similar throughout the temporal



window, many separations are plausible fits to the data and
the smoothness terms help resolve the ambiguity.

4. Results
4.1. Experimental Setup

In our experiments, the scenes were illuminated using
a 1024 x 768 DLP projector. For the experimental results
presented in 4.2, the scenes were imaged with a Point Grey
Grasshopper camera at 10 frames per second. For the results
on deformable objects (4.3), the scenes were acquired at 60
frames per second. For all experiments, the camera was
radiometrically calibrated to have a linear response curve
and the camera and projector were colocated using a plate
beam splitter. The experimental setup is shown in Figure 4.

An offline calibration step is used to find the image s
corresponding to each illumination pattern. Each pattern is
projected onto a diffuse, planar white surface and imaged by
the camera. To correct for projector vignetting, all images
were normalized with respect to a reference image of the
same planar surface while fully lit by the projector. This
calibration needs to be performed only once.

4.2. Comparisons on Rigidly Moving Scenes

The goal of these experiments is to compare the direct
and global components generated by our algorithm on mov-
ing scenes to ground truth and to analyze the effect of tem-
poral window size on separation accuracy.

Ground truth was acquired by first capturing 25 frames
of a scene while projecting checkerboard patterns at differ-
ent offsets. These frames were captured while the scene
and camera were stationary. The direct and global compo-
nents calculated on these 25 frames are used as ground truth
(RMS Error 0). We then captured a video sequence with the
scene in motion while patterns were being projected. The
pose of the first frame in the video matches the pose from
which the ground truth frames were acquired.

This experiment was performed from two different poses
on two scenes (see Figs. 2 and 5) yielding a total of four tri-
als. RMS errors against ground truth for different separation
methods averaged over the four trials are shown in Figure 3.

In the static case, the results improve in quality as the
number of frames used increases (‘Static’ in Fig. 3). We
also used the regularization method described in 3.3 on the
static sequence (‘Static regularized’ in Fig. 3). The regular-
ization improves performance when the number of frames is
small and many pixels have not seen enough different pro-
jector pattern values. However, it smooths over some of the
fine details in the scene and so it does not perform as well
the unregularized technique when more frames are used.

For the video sequence corresponding to each trial, we
tested our motion compensation method with different slid-
ing window sizes using the first frame as the window cen-

Figure 4: Experimental Setup: Our experiments were per-
formed using a camera and projector colocated with a plate
beamsplitter. We also have a portable version of the setup.

ter. We evaluated the motion compensation with the warp
refinement described in 3.2 (‘Moving Refined’ in Fig. 3)
and with the unrefined warps ("Moving’ in Fig. 3). We
also tested an interleaved approach where the projector al-
ternates between patterns and uniform illumination (’Inter-
leaved’ in Fig. 3). Warps computed between the fully lit im-
ages are interpolated to align the patterned images. These
aligned images are then separated as described in 3.3.

When the number of frames used is small, the regular-
ized static method and the proposed motion compensated
methods perform similarly. As the number of frames in-
creases, the improvement in the motion compensated out-
put reduces and then stops. When the window size is large,
the frames near the edges of the sliding window can not be
aligned to the center frame because the viewpoint changes
are too large and the global and direct components of the
scene points change appreciably. The motion compensa-
tion algorithm automatically discards these frames and they
yield no improvement in the results.

Interleaving does not perform as well as our proposed
method. The temporal window available for performing
separation on dynamic scenes is small. With interleav-
ing, only half the frames in this window can be used for
computing separation. Additionally, if the motion is not
smooth, the interpolated warps do not align images accu-
rately. These problems could be solved by using higher
frame rates, but at a given capture rate our method can han-
dle faster, more complex motion than interleaving. Fig. 5
shows results from our motion compensation algorithm and
interleaving with different temporal window sizes in an ex-
ample scene.

Direct-global separation using a single image creates
blurred, low resolution results. Examples are shown in the
supplementary material.

4.3. Deformable Motions

In addition to rigid motion, our algorithm can also com-
pensate for deformations and articulated motions. Fig. 6
shows some examples of separations obtained from videos
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Figure 3: Comparison of Separation Techniques: The RMS errors in the direct (a) and global (b) components for different
separation techniques as the number of frames used is varied. The blue ‘static’ curves are from direct-global separation on
stationary scenes and represent the best possible performance a method could achieve for a given number of frames. The red
‘moving’ curves are from using our motion compensation algorithm on moving scenes. When the number of frames is small,
the motion compensation method performs just as well on the moving sequences as normal separation on an equal number
of static frames. When the window size increases, frames far away from the window center are discarded because alignment
fails and so performance of the motion compensated algorithm levels off.

of moving hands, deforming faces and a plant being blown
in the wind. For comparison, we have included the re-
sults without motion compensation. When the motion es-
timation was switched off, we selected the window size for
each example that gave the best result to compare against
our method. Without motion compensation, the results are
blurred and edges in the scene (around the fingers for exam-
ple) are corrupted. Subsurface scattering occurs in the skin
so most of the color appears in the global component. The
supplementary material includes these videos.

5. Discussion

Although we do not model the changes in global and di-
rect components that occur within a small temporal window,
our method is still able to handle broad specular lobes like
shiny surfaces on wax and highlights on skin. Sharp spec-
ularities and specular inter reflections such as those from
polished metal surfaces would cause both the image align-
ment and component separation steps to break down. The
fast direct-global separation algorithm for static scenes can
handle sharp specularities but not specular inter reflections.
One solution would be to use crossed polarization filters to
remove specular reflections. Methods for removing specu-
lar components from images include [1 1] and [12].

The experiments presented were designed so that motion
blur and defocus would not cause additional errors. To use
our method in less controlled settings, we would need to
consider the trade-off between acquisition time and accu-

racy. Using shorter exposure times and smaller apertures to
avoid motion blur and defocus means that less light reaches
the camera and image noise becomes more of a problem.
We would need to consider how computational photogra-
phy methods like coded aperture for motion deblurring [16]
and light efficient photography [7] could be applied.
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Figure 6: Direct-Global Separation on Deformable Objects: On the left are the global and direct components estimated
without any motion compensation for faces changing expression, articulating hands and a plant moving in the breeze. Many
details get blurred away like the hair, and the lines on the palm. Other motion artifacts are clearly visible on the fingers
and leaves. The two columns on the right show the component estimates on the same frames using our motion compensation
method. With motion compensation, many of the artifacts are corrected and a lot more of the original scene detail is recovered.



