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Abstract

The paper introduces an action recognition framework

that uses concepts from the theory of chaotic systems to

model and analyze nonlinear dynamics of human actions.

Trajectories of reference joints are used as the represen-

tation of the non-linear dynamical system that is gener-

ating the action. Each trajectory is then used to recon-

struct a phase space of appropriate dimension by employ-

ing a delay-embedding scheme. The properties of the re-

constructed phase space are captured in terms of dynami-

cal and metric invariants that include Lyapunov exponent,

correlation integral and correlation dimension. Finally, the

action is represented by a feature vector which is a combi-

nation of these invariants over all the reference trajectories.

Our contributions in this paper include :1) investigation of

the appropriateness of theory of chaotic systems for human

action modelling and recognition, 2) a new set of features

to characterize nonlinear dynamics of human actions, 3) ex-

perimental validation of the feasibility and potential merits

of carrying out action recognition using methods from the-

ory of chaotic systems.

1. Introduction

Human actions consist of spatio-temporal patterns that

are generated by a complex and time varying non-linear dy-

namical system. A complete description of this system will

require enumeration of all independent variables, their inter-

dependencies, differential equations controlling their evo-

lution and a set of boundary conditions to be satisfied by

the system. Ideally, one would like to have this complete

description so that it can be used to control, predict, and

extract features of the dynamical system in a deterministic

fashion. However, in practical scenarios obtaining a com-

plete analytic description is extremely hard.

In computer vision literature, the problem of obtaining

the description of a dynamical system is often overcome by

selecting a set of variables defining the state space, and a

function that maps the previous state to the next state. The
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Figure 1. Nine different actions are used from the dataset provided

by [12]. Trajectories from six landmarks (two hands, two feet, the

head, and the body center) on human body are used as input to our

method. These trajectories are used to extract invariant features

of the reconstructed phase space that represent the underlying dy-

namical system.

type of the mapping function determines whether it is a

linear, non-linear or stochastic dynamical system. For in-

stance, human actions can be represented in terms of state

variables defined as the image locations of body joints,

followed by assuming that a linear [7], non-linear [8] or

stochastic dynamical model [10] is controlling the evolu-

tion of these state variables. The unknown parameters of

the dynamical model are learnt using a training data of hu-

man actions.

Our contention in this paper is that by constraining the

dynamical system to be of a particular type, one only ap-

proximates the true non-linear physics of human actions. In

other words, by making assumptions about the type of the

dynamical model, one tries to fit the experimental data to

the model by finding values of the parameters that best ex-

plains the data. Rather than letting the data speak for itself

about the type of the dynamical system, number of indepen-

dent variables, degrees of freedom of the system, and values

of unknown parameters. An analogous example of this type

of approach from the field of probability theory is to assume

the type of the probability distribution generating the data,
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say Gaussian, and then computing the mean and variance

of the Gaussian. Rather than allowing the data to determine

the actual shape of the probability distribution using kernel

density estimation.

The aim of this paper is to derive a representation of

the dynamical system generating the human actions directly

from the experimental data. This is achieved by propos-

ing a computational framework that uses concepts from

theory of chaotic systems to model and analyze nonlinear

dynamics of human actions, by using trajectories of body

joints. There are few important points to note here: First,

by proposing dynamical system generating human actions

as a chaotic system, we are making the statement that there

is a determinism present in the seemingly stochastic dynam-

ics of human actions. This determinism, if exploited, can be

used to derive richer features for action recognition. Sec-

ond, the proposed approach of modelling human actions

directly from experimental data is superior to approximate

modelling, since no assumptions have to be made about the

type or form of the dynamical model.

2. Related Work

In general, approaches for human action and activity

analysis can be categorized on the basis of the represen-

tations used by researchers. Some leading representa-

tions are: learned geometrical models of human body parts

[19, 20], space-time pattern templates [12, 16]), 3D infor-

mation ([17]), shape or form features [21, 13]), interest

point based representation [23], motion/optical flow pat-

terns [24, 18] and volumetric features [22, 15].

Our present work is more related to the approaches of

learning dynamical models over the state space that repre-

sent human motion ([7, 10, 14]). Specifically, the method

by Bissacco et. al. [7] used a parametric skeletal model of a

moving person and learned a linear dynamical model, while

Bregler [14] proposed a mixed-state statistical model with a

finite state automaton at the highest level to switch between

local linear models to cater for the nonlinear dynamics of

human motion. Later on [8, 9] attempted to integrate the

nonlinear dynamics directly into the model, rather than us-

ing an external mechanism to control the switching.

A common theme of all these approaches is that they ap-

proximate the true motion dynamics by putting constraints

on the type of the dynamical model. In addition, they re-

quire very detailed mathematical and statistical modelling

which involves assumptions about the probability distribu-

tions of stochastic variables of the model, development of

inference methods, and algorithms for learning parameters

of the distribution using a large data set. To overcome some

of these difficulties, in this paper we are proposing a frame-

work that captures the true non-linear dynamics of the hu-

man motion, and generates a more richer set of features by

directly working with the experimental data. In addition,

our method is not a statistical learning method therefore

does not require large training data, instead strong discrimi-

native features can be derived just from one example action.

3. Preliminaries

In this section we present the background material re-

lated to the theory of nonlinear dynamics and chaos. We

believe that this quick overview will be helpful in under-

standing the rest of the paper. A dynamical system can be

represented as a set of functions which describes how vari-

ables change in time. A dynamical system is termed non-

linear if the function defining the change in the system is

nonlinear. A dynamical system may be stochastic or deter-

ministic. In a stochastic dynamical system, new values are

generated from a probability distribution, while in a deter-

ministic dynamical system a single new value is associated

with any current value.

Dynamical systems can be represented by state-

space models, where state variables X(t) =
[x1(t), x2(t), ...., xn(t)] ∈ Rn define the status of the

system at a given time t. The state variables are often

considered to be in subspaces of Euclidian spaces, but

they more generally are in n-dimensional manifolds. The

space of the state variables is often called the phase space.

The state of the system evolves in accordance with a

deterministic evolution function and the path traced by the

systems states as they evolve over time is referred to as a

trajectory or orbit. The collection of all trajectories from all

possible starting points in the phase space of the dynamical

system is called a phase portrait. An attractor is defined as

the region of the phase space to which all the trajectories

settle down to as time limit approaches infinity. If the

attractor is not stable it is termed strange. The invariants of

system’s attractor are measures that quantify the properties

that are invariant under smooth transformations of the

phase space or control parameters. Invariants fall into

three classes: 1) Metric 2) Dynamical and 3) Topological.

Metric invariants include dimensions of different kind and

multi-fractal scaling functions, while dynamical invariants

include Lyapunov exponent. Topological invariants gener-

ally depend on the periodic orbits that exist in the strange

attractor. Embedding is defined as a process of mapping

one-dimensional signal to a m-dimensional signal.

Chaos theory is one of the ways to study nonlinear phe-

nomena. The name ‘Chaos Theory’ comes from the fact

that the systems the theory describes are apparently disor-

dered, but theory is really about finding the underlying or-

der in apparently random data. In other words, a chaotic

system is a deterministic system which is globally stable,

exhibit clear boundaries and displays sensitivity to the ini-

tial conditions. When applying chaos theory to a given a

problem, the goal often is to extract information required

to identify and classify strange attractors of the dynamical



system from the experimental data. The procedure can be

broken down into a few relatively easy steps. These are:

find a suitable embedding of the data, verify the existence

of deterministic structure, compute dynamical, topological

and metric invariants of the periodic orbits, and finally use

the invariants for the identification purposes. The proposed

framework for action recognition is built around these basic

steps. Intuitively speaking, for a computer vision practi-

tioner chaos theory provides a way of determining the de-

scription of a dynamical system from a time series data. As

long as one has the time series data, analysis steps described

above can be applied. Few examples of the time series data

that we come across in the field of computer vision would

be trajectories, pixel intensity over time, flow vectors etc.

4. Framework

This section describes the algorithmic steps of the pro-

posed action recognition framework. These are: i) Given

a video of an exemplar action, obtain trajectories of ref-

erence body joints, and break each trajectory into a time

series by considering each data dimension separately; ii)

obtain chaotic structure of each time series by embedding

it in a phase space of an appropriate dimension using the

mutual information [2], and false nearest neighborhood al-

gorithms [5]; iii) apply determinism test to verify the exis-

tence of deterministic structure in the reconstructed phase

space; iv) represent dynamical and metric structure of the

reconstructed phase space in terms of the phase space in-

variants, and v) generate global feature vector of exemplar

action by pooling invariants from all time series, and use it

in a classification algorithm. Now, each step is explained in

detail in the following subsections.

4.1. Action Representation

A trajectory corresponding to a body joint represents a

deterministic nonlinear dynamical system. In our frame-

work six body joints corresponding to two hands, two feet,

head and belly are taken as the reference joints. To make the

Figure 2. A sample set of 3-dimensional trajectories generated by

head (blue), two hands (red & green) , and two feet (red & green)

are shown for the running action from the motion capture data set.

The stick figure with green landmarks depict the first frame, and

the one with blue landmarks represents the last frame.

representation scale and translation invariant, trajectories of

the first five joints are normalized with respect to the belly

point. Hence, for any given action we use five trajectories

to represent the action. We choose these reference joints

as they provide sufficient information about most of the ac-

tions. Another consideration is that these joints are rela-

tively easy to automatically detect and track in real videos,

as opposed to the inner body joints which are more difficult

to track. Figure 1 shows examples of set of trajectories for

different actions in the case of real videos (2D trajectories),

while Figure 2 shows trajectories for a running action from

the motion capture data (3D trajectories). Note that, we are

not solving the tracking problem in this paper, therefore, we

assume that the tracks are available to us. Formally, we rep-

resent the normalized trajectory corresponding to a joint b as

a sequence of locations Zb = [zb
1, zb

2, ..., zb
t ], where z ∈ Rk

with k = 2 for image based measurement, and k = 3 for the

motion capture data. Finally, we have k × NB scalar time

series for each exemplar action, where NB is the number of

the reference joints.

4.2. Embedding

Embedding, as defined earlier, is a mapping from one

dimensional space to a m-dimensional space. It is an im-

portant part of study of chaotic systems, as it allows us to

study the systems for which the state space variables and

the governing differential equations are unknown. The un-

derlying idea of embedding is that all the variables of a dy-

namical system influence one another. Thus, every subse-

quent point, zb
i , of a given one dimensional time series re-

sults from an intricate combination of the influences of all

other system variables. Therefore, zb
i+τ can be considered

as a second substitute system variable which carries infor-

mation about the influence of all other variables during time

interval τ . Using this reasoning one can introduce a series

of substitute variables zi+2τ , ..., zi+mτ , and thus obtain the

whole m-dimensional phase space, where substitute vari-

ables carry the same information as the original variables of

the system [3].

Formally, the embedding is achieved by using theo-

rem of Takens [1], which states that a map exists between

the original state space and a reconstructed state space.

The theorem assures that one does not have to measure

all the true state space variables of the system, as in fact

almost any one of the variables will be sufficient to re-

construct the dynamics. It also states that the dynamical

properties of the system in the true state space are pre-

served under the embedding transformation. Thus, for

a large enough embedding dimension m, the delay vec-

tors Yb(i) = [zb
i , z

b
i+τ , zb

i+2τ , ..., zb
i+(m−1)τ ], generate a

phase space that has exactly the same properties as that

formed by the original variables of the system. Over here,

zb
i , z

b
i+τ , zb

i+2τ , ..., zb
i+(m−1)τ represent scalar time series,
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Figure 3. Depicts the embeddings of the time series corresponding to the right foot of the actor shown in Figure 2. The first column

shows the time series corresponding to the x and y dimensions of the right-foot trajectory. The second column shows the plot of mutual

information which is used to determine τ . The first minima value, marked by the green bar, reflects the optimal values of τ . The third

column shows the plot of a measure E1(d) [27], which can be derived from the false nearest neighbor algorithm, against different values

of m. The value of m, after which the plot converges to a stable value, is chosen as the optimal embedding dimension. This happens to

be at m = 5 in the current case. The fourth column shows the 3-dimensional projection of the reconstructed phase space for the chosen

values of τ and m. This embedding is used to extract invariant features.

belonging to one dimension of the trajectory, of the body

joint b at times t = idt to t = (i + (m − 1)τ)dt. Here,

τ is known as the embedding delay. However, the embed-

ding theorem does not provide a method to find the optimal

values of τ and m. For estimating these values, we use the

mutual information [2] and the false nearest neighbor algo-

rithms [4]. In order to make the paper self-contained and

readable, we are re-stating these algorithms from [3].

4.2.1 Estimating Embedding Delay

The estimation of delay parameter is based on the idea, that

the mutual information between zb
i and zb

i+τ can be used to

estimate a proper embedding delay τ . The algorithm con-

siders two criterion: First, the value of τ should be large

enough so that value of zb at time i + τ is measuring some-

thing significantly different from the value of zb at time i,

and thus providing us with a new information which we do

not have up till now. Second, the value of τ should not be

larger than the time in which system loses memory of its

initial state. The algorithmic steps are:

1. From the given time series zb
1, z

b
2, . . . , z

b
t , compute

zmin and zmax.

2. Compute absolute value of their difference, d =
|zmin − zmax|, and partition d into j equally sized in-

tervals.

3. Compute:

I(τ) = −
∑j

h=1

∑j

k=1 Ph,k(τ)ln
Ph,k(τ)

Ph(τ)Pk(τ) , where

Ph and Pk denote the probabilities that the variable

assumes a value inside the hth and kth bin, and Ph,k is

the joint probability that zb
i is in bin h and zb

i+τ is in

bin k.

4. Chose that τ as the embedding delay parameter for

which I(τ) gives the first minima (Figure 3).

4.2.2 Estimating Embedding Dimension

For finding the optimal embedding dimension m we used

the false nearest neighbor method proposed in [4]. The idea

of the algorithm is to unfold the observed orbits from self

overlap arising from the projection of an attractor of a dy-

namical system on a lower dimensional space. The algo-

rithm makes use of the assumption that the phase space of a

dynamical system folds and unfolds smoothly, and there are

no sudden irregularities. This translates to the observation

that if points are sufficiently close in a reconstructed phase

space, then they should remain close during a forward iter-

ation. If a phase space point has a neighbor that does not

full fill this criteria then that point is said to have a false

neighbor [3]. The steps for finding optimal m are:



1. Pick a point p(i) in a m-dimensional space from the

time series Zb.

2. Find a neighbor p(j) so that ‖p(i) − p(j)‖ < ξ.

3. Compute a normalized distance Ri =
|zb

i+mτ−zb
j+mτ |

‖p(i)−p(j)‖ ,

between (m + 1)th coordinates of p(i) and p(j).

4. If Ri is larger then threshold Rth, then p(i) is marked

a having a false nearest neighbor.

5. Apply the equation in step 3 to entire time series for

m = 1, 2, . . ., until the fraction of points for which

Ri > Rthis negligible.

Figure 3 pictorially shows the process of finding optimal

τ and m for two time series. It also displays 3-dimensional

mapping of the reconstructed phase spaces. Once the val-

ues of τ and m are known, we slide a window of length m

through the time series, and stack the m dimensional vec-

tors row-wise into a matrix

Xb =









zb
0 zb

τ . . zb
(m−1)τ

zb
1 zb

1+τ . . zb
1+(m−1)τ

zb
2 zb

2+τ . . zb
2+(m−1)τ

. . . . .









. (1)

Note that each component of the m-dimensional vector

is separated by an interval τ . Each row of the above matrix

is now a point in the m-dimensional reconstructed phase

space. We repeat the process for each time series, thus ob-

taining k × NB reconstructed phase spaces for each action.

4.3. Determinism Test

The purpose of this test is to get the evidence in sup-

port of our assertion, that there is a structure present in the

trajectory data that can be exploited to obtain the represen-

tation of the underlying dynamics of human actions. It is

performed on each of reconstructed phase space to distin-

guish irregular behavior resulting from deterministic chaos

and the one appearing due to the noise. For this purpose,

we employ a determinism test proposed in [26], where the

idea is that neighboring trajectories in a small portion of the

reconstructed phase space should all point in the same di-

rection, thus assure the uniqueness of solutions in the phase

space which is a property of determinism. The outcome of

this test (as shown in Figure 4) on our data validates the

existence of determinism. That is, it reveals that the trajec-

tories of the body joints indeed are generated by a determin-

istic process, and this justifies further analysis of the data by

using the phase space invariants.

4.4. Invariant Features

Metric, dynamical and topological organization of or-

bits associated with a strange attractor of the reconstructed
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Figure 4. The determinism test is performed by checking the con-

vergence of the correlation dimension for the embedding dimen-

sion larger than m. In the case of a stochastic system, the value

of correlation dimension (y-axis) increases monotonically with the

increasing embedding dimension (x-axis). We show that the data

under consideration indeed converges to the value of correlation

dimension at the computed values of m (the green line) for the

two time series shown in Figure 3.

phase space can be used to distinguish different strange at-

tractors representing different human actions. This organi-

zation is quantified in terms of phase space invariants. In

this paper, we limit ourselves only to metric and dynamical

invariants which include: i) Maximal Lyapunov Exponent,

ii) Correlation Integral, iii) Correlation Dimension.

4.4.1 Maximal Lyapunov Exponent

Lyapunov exponent is a dynamical invariant of the attrac-

tor, and measures the exponential divergence of the nearby

trajectories in the phase space. If the value of maximum

Lyapunov exponent is greater than zero, that means the dy-

namics of underlying system are chaotic. In order to com-

pute maximum Lyapunov exponent of reconstructed phase

space, we employ algorithm given in [3]. The algorithm

tests the exponential divergence of trajectories directly from

the phase space trajectories.

To estimate the maximum divergence around a reference

point p(i) in the phase space, we start by finding all the
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Figure 5. The computation of maximal Lyapunov exponent (for the

right foot trajectory shown in Figure 2) from the plot of S(∆n)
against ∆n. The slope of the line fitted to the curve provides a

robust estimate of the maximal Lyapunov exponent. The estimated

values here are 0.0104 for (a) and 0.0109 for (b).



neighbors p(k) which are within distance ε. Here p(i) is the

ith row of the reconstructed phase space matrix Xb. The

neighboring points are used as the starting point of nearby

trajectories. The average distance of all the trajectories to

the reference trajectory can be computed as a function of

relative time ∆n as follows:

Di(∆n) =
1

r

r
∑

s=1

| zb
k+(m−1)τ+∆n − zb

i+(m−1)τ+∆n |,

(2)

where s counts the different points p(k), and there are

total of r such points. Finally, the average of the loga-

rithm of Di(∆n) is obtained for several reference points

to get the effective expansion rate. That is we compute

S(∆n) = 1
c

∑c

i=1 ln(Di(∆n)), where c is the number of

reference points over which the process is repeated. Values

of S(∆n), computed for different ∆n, and the maximum

Lyapunov exponent is taken as the slope of the line fitted to

the graph of S(∆n) against ∆n. Figure 5 shows this graph

for the two time series shown in Figure 3.

4.4.2 Correlation Integral

The correlation integral is a metric invariant, which charac-

terizes the metric structure of the attractor by quantifying

the density of points in the phase space. It achieves this

through a normalized count of pair of points lying within a

radius ǫ. Formally, correlation integral C(ǫ) is defined as:

C(ǫ) =
2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

Θ(ǫ− ‖ xi − xj ‖), (3)

where Θ is the Heaviside function. Note that, xi in this case

refers to a point in the phase space i.e. it corresponds to ith

row vector of Xb. In our experiments, we computed C(ǫ)
for a fixed values of ǫ and used it as a feature vector. Figure

6 shows the plot of the correlation integral for increasing

values of ǫ.

4.4.3 Correlation Dimension

The correlation dimension also characterizes the metric

structure of the attractor. It measures the change in the den-

sity of phase space with respect to the neighborhood radius

ǫ. The correlation dimension can be computed from the

correlation integral by exploiting the power law relation-

ship C(ǫ) ≈ ǫd, where d is the correlation dimension. The

computation of the correlation dimension proceeds by plot-

ting C(ǫ) and ǫ on a log-log graph. Again, the slope of the

linen fitted to this graph provides a robust estimate of cor-

relation dimension ,because the region in which power law

is obeyed appears as a straight line in the graph. Figure 6

shows this graph, along with the estimated values of the cor-

relation dimensions for the two time series shown in Figure
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Figure 6. Computation of correlation dimension for the two time

series shown in Figure 3. With increasing values of neighborhood

radius ǫ (the horizontal axes), the values of the correlation integral

(vertical axes) also increases. The slope of the line fitted to the

curve provides an estimate of the correlation dimension.

3. The region whose slope is an estimate of the correlation

dimension.

Another useful information about the action can be ob-

tained from the variance of the time series data, which we

employ as a part of the feature vector in addition to the

phase space invariants.

5. Experiments

Experimental analysis is carried out on data sets pro-

vided by [12] (see Figure 1) and 3D motion capture dataset

from [25] (see Figure 7).

5.1. Motion Capture Dataset

The first set of experiments was performed on the data

set containing 3-dimensional motion capture sequences pro-

vided by FutureLight [25]. Figure 7 shows some typical

sequences from this data set. In total, it contains 155 se-

quences of 5 action classes, namely dance, jump, run, sit,

and walk with 30, 14, 30, 33, and 48 instances, respectively.

All five classes have significant intra-class variations. For

example, the run class has variations in terms of speed (jog,

run), stride length (short, long), bounce (low, high), and arm

swing (low, high). The sequences in the run class, therefore,

are created by several combinations of these parameters,

and also include stopping and turning events. Similarly, the

walk class contains these variations, in addition to a param-

eter for the pelvic swing (high, low). There are other varia-

tions like walking in a circle, turning around, stopping etc.

The dance class contains stationary and moving ballet se-

quences, and some cat-walk sequence, which in fact resem-

bles closely to the walk sequences. The jump class contains

jumping in place as well as jumping/hopping on one foot

while walking. Finally, the sit class contains variations in

the execution styles. In summary, all the action classes con-

tains significant intra-class variations. and therefore, this is

a very challenging data set.



(a) Dance (30 sequences): includes a large variety of ballet sequences. A subset of these is very similar to the walk class.

(b) Jump (14 sequences): mostly hopping and jumping while walking (c)Sit (33 sequences): contains variations in sitting postures & directions

Figure 7. Sample sequences of few action classes from the motion capture data set. The stick figures with green joints depicts

the first frame of the sequence, while the stick figure with blue joints represent the last frame.

The initial input is in the form of trajectories of 13 body

joints of the stick figure shown in Figure 2, but we only

use 5 reference joints. We extract scalar time series from

all five reference joints, resulting in 3 time series (x,y, &

z) per reference joint and 15 time series per action. Each

time series is embedded separately using the procedure de-

scribed in Section 4.2.2. A four dimensional feature vector

is then constructed for each time series by computing Lya-

punov exponent, correlation integral, correlation dimension

and variance. After concatenation, for a given action se-

quence this results in a 60-dimensional feature vector. For

testing, we use the leave-one-out cross validation approach

using the K-nearest neighbor classifier with K = 5. The

classification results achieved by this approach are shown

in the Figure 8. We achieved mean accuracy of 89.7% on

the entire data set. Four run sequences were misclassified

as the walk, which is understandable considering the sim-

ilarity between these actions. Another main source of er-

ror was the confusion between the walking ballet sequences

from the dance class and the walk class.

5.2. Video Data Set

The second set of experiments was performed on the ac-

tion data set [12], which depicts real actors performing dif-

ferent actions. Figure 1 shows some examples of these ac-

tions. Specifically, the data set contains 81 videos with 9

different actions performed by 9 different actors. Given the

data, the first step in the algorithm is the extraction of joint

tracks for the six landmarks on the human body (two hands,

two feet, the head, & the belly point). We used a semi-

supervised joint detection and tracking approach for this ex-

periment. That is, for computing trajectories for the refer-

ence joints, we extracted body skeletons and their endpoints

using by using morphological operations on foreground sil-

4323Walk

33Sit

412212Run

113Jump

228Dance

WalkSitRunJumpDance

4323Walk

33Sit

412212Run

113Jump

228Dance

WalkSitRunJumpDance

Figure 8. Confusion table for the motion capture data set. We

achieved mean classification accuracy of 89.7%.

houettes of the actor. Then an initial set of trajectories is

generated by joining extracted joint locations using the spa-

tial and motion similarity constraint. The broken trajecto-

ries and wrong associations were corrected manually. Note

that the quality of the phase space embedding is dependent

on the length of a time series, which implies that we need

to observe the target action for sufficiently long period of

time (approximately 200 frames). However, the length of

the videos in the data set varies from 27 to 80 frames. We

overcame the problem by up-sampling and concatenating

the original trajectories and thereby increasing the number

of observations. Our experimental results have shown we

are able to capture variations present in different actions by

employing this approximation. Once the trajectories of five

body joints relative to the centroid of foreground blob are

recovered, we decomposed each of them into their two spa-

tial components (x & y). This resulted in ten time series in

total, which are then used to compute the invariants. Af-

ter concatenating, for a given action this resulted in a 40-

dimensional feature vector.

The testing was performed performed by using leave-

one-out cross validation. When using K-nearest neighbor,

one sequence is kept as a test sequence while all the remain-

ing sequences were used as training samples. We obtained a

mean classification accuracy of 92.6% for all nine actions.
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Figure 9. Confusion table for the action data set of [12], where our

algorithm has achieved mean accuracy of 92.6%.

The confusion table is shown in Figure 9. It can be ob-

served that only 6 out of a total of 81 videos were misclas-

sified in these experiments. Two of the misclassified videos

were from the Jump Forward action, which were incorrectly

labelled as Run action. While two other videos were mis-

classified as Jumping in Place. The Run and Side Gallop

action have one misclassification each. The observation we

would like to make over here is that these are isolated errors,

mostly for those actions which have quite a bit of similarity

with each other, as is the case with when confusing running

with walking, or jumping forward with running.

In order to test the robustness of our method with respect

to the number of available joint tracks, we performed a sec-

ond set of experiment by selecting only a subset of the 5

reference joints. In the first run, the head joint is removed

from the list of reference point, and we achieved a mean

accuracy of 81.2%. Most of the new errors were observed

in bending and jumping actions. In the second run, we re-

moved the left hand joint from the set and achieved an accu-

racy of 86.1%. We consider this a satisfactory performance,

as we were able to maintain the action recognition accuracy

up to a reasonable degree even if one of the reference time

series is missing. This shows that the proposed approach is

not very sensitive to occlusion of individual body joints. At

the same time, we observed that the classification accuracy

for actions that are heavily dependent on the removed body

joint (e.g. head in the case of bending) suffers more. But

for actions like walking and running that involve multiple

joints (two feet & two hands), removing one of these joints

does not severely effect the overall classification accuracy.

6. Conclusion

In this paper we introduced a framework which char-

acterizes the nonlinear dynamics of human actions by us-

ing the theory of chaotic systems. Using this framework,

we extracted a set dynamical and metric invariants of the

strange attractor of the dynamical system, and used it for ac-

tion recognition. Experimental validation of the feasibility

and potential merits of carrying out action recognition using

this framework is demonstrated on motion capture and real

videos of human actions.
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