Twenty Five Years of LF

Robert Harper
Carnegie Mellon

Sunday, September 22, 13
A Framework for Defining Logics

Strongly influenced by

- Martin Löf’s type theory
- de Bruijn’s AUTOMATH
- Avron’s consequence relations
A Framework For Defining Logics

A **language** for defining logical systems.

- Capture syntactic and deductive regularities.

- A **methodology** for encoding formal systems and assessing their **adequacy**.

- Compositional bijection between objects and certain canonical forms.
The Judgmental Perspective

• Martin-Löf stressed the Logic of Judgments as prior to the Logic of Propositions.

• A prop, A true

• \(J_1, ..., J_n \vdash J \) expresses entailment

• \(\vdash_{x,y,...} J \) expresses generality

• Special emphasis on expressing intuitionistic type theory.
The Logic of Judgments

- Martin-Löf drew the distinction between
 - **Analytic**: self-evident judgments.
 - **Synthetic**: requires evidence.

- A true is synthetic, whereas $M : A$ and $M \equiv N : A$ are analytic.
The analytic/synthetic distinction depends on the **semantics** of the object logic.

Our interest was purely in the **syntactics** of logics: represent formal systems in a systematic way, regardless of their meaning.

Initial focus was on the concept of **natural deduction** introduced by Gentzen.
What Is Natural Deduction?

AUTOMATH had similar motivations:

- Content agnosticism: no ideology of math
- Notation for proofs ("flags" and "brackets")
- Many different formalisms studied, esp. by van Daalen, Nederpelt, and Jutting.
- Did not stress encoding of formalisms, rather just "doing mathematics".
What is natural Deduction?

- All judgments are treated synthetically, with evidence being a formal derivation.

- Atomic judgments are the “observables”.

- Higher-order judgments represent reasoning under hypotheses and generality.

- These are neatly captured using dependently typed λ-terms.
Three-level type system:

- **Kinds** $K: \text{Type}, \prod x: A.K$
- **Families** $A: c, \lambda x: A_1.A_2, AM, \prod x: A_1.A_2$
- **Objects** $M : x, c, \lambda x: A.M, M_1M_2$
- **Contexts**: $x:A$
- **Signatures**: $c:K, c:A$
The judgments as types principle provided the methodology of encoding:

- Atomic judgments are constant families.
- Hypothetical and general judgments are expressed using \(\prod \) types.

Adequacy = compositional bijection between derivations and canonical forms of corresponding type.
Judgments as Types

Higher-order abstract syntax:

\[\begin{align*}
\text{exp} & : \text{type}. \\
\text{zero} & : \text{exp}. \\
\text{prop} & : \text{type}. \\
\text{eq} & : \text{exp} \rightarrow \text{exp} \rightarrow \text{prop}. \\
\text{imp} & : \text{prop} \rightarrow \text{prop} \rightarrow \text{prop}. \\
\text{all} & : (\text{exp} \rightarrow \text{prop}) \rightarrow \text{prop}.
\end{align*} \]

Adequacy: \(\alpha\)-equivalence, substitution are available “for free.”
Derivations are higher-order abstract syntax:

prop : type.
true : prop -> type.
impI : {a:prop}{b:prop}
(true a->true b) -> true(imp a b).
impE : {a:prop}{b:prop}
true(imp a b) -> true a -> true b.

Adequacy: hypothetical and general reasoning is provided “for free”.
The LF language enabled expression of unusual \textit{variations} on natural deduction.

The \textbf{Schroeder-Heister} implication elimination rule:
\begin{verbatim}
shelim :
 ((true A -> true B) -> true C) ->
 true (imp A B) -> true C
\end{verbatim}
Two Things That Really Mattered

- The methodology of encoding stresses capturing the consequence relation.
- Characterize a class of contexts (worlds).
- Consider the canonical forms of each type.
- Synthetic representation allows for higher-level judgments.
- Derivations are objects of the theory.
The biggest technical challenge in formulating LF was to develop

- An algorithm for type checking, which reduces to checking definitional equality.

- A notion of canonical forms with which to state adequacy.

- Lots of effort went into figuring this out.
Canonical forms are **long** $\beta\eta$-normal forms.

- $\text{all}([x]\text{eq }x\ x)$ represents $\forall x.x=x$

- **But** $\text{all}(\text{eq})$ is not canonical!

- $\beta\eta$-equivalence is hard to handle in the presence of dependent types, while retaining decidability of type checking.
Definitional Equality

- Earliest versions used type conversion.
 - If $M : A$ and $A \equiv B$, then $M : B$
 - $A \equiv B$ is untyped $\beta\eta$-conversion.

- Untyped $\beta\eta$-conversion is not CR.
 - $\lambda x:A.(\lambda y:B.M)(x)$ critical pair

- **Strengthening** is very difficult, solved by Anna Salvesen.
Pfenning and H developed a **typed** algorithm with **label-free** canonical forms, no family \(\lambda \)'s.

- **Typed phase:** \(\Gamma \vdash M \iff N \Downarrow A \).
- **Structural phase:** \(\Gamma \vdash M \leftrightarrow N \Uparrow A \).

Coquand developed a method based on the **shapes** of terms.

- Handles family \(\lambda \)'s, but not other types.
The critical insight came from Watkins:

- Define **canonical LF** consisting of long $\beta\eta$-normal forms **only**.

- Define **hereditary substitution** by a clever inductive argument over types and terms.

- See H + Licata JFP 2007 for canonical LF with subordination.
Definitional Equality

Key idea: \(\beta \)-reduce during substitution, preserving \(\eta \)-long form.

Defined by a simultaneous induction on type and structure of term.

Substitution of canonical into canonical may induce further reductions.

Derived from Pfenning’s structural cut elimination, itself proved using LF.
Higher-level Judgments

- It quickly became apparent that judgments about derivations can express impurities.

- Avron, Honsell, Mason used “D closed” to capture validity consequence relation.

- Led to judgmental reconstruction of modal logic by Pfenning and Davies.

- Similar methods made it possible to formalize the metatheory of logical systems.
Type preservation is a three-place relation:

\[\text{pres} : \text{red} \ M \ N \rightarrow \text{of} \ M \ A \rightarrow \text{of} \ N \ A. \]

Populate with derivations of the lemma:

\[_ : (\text{pres} \ \text{Dred} \ \text{DofM} \ \text{DofM'}) \rightarrow (\text{pres} \ (\text{red/apl} \ \text{Dred}) \ (\text{of/ap} \ \text{DofM} \ \text{DofN}) \ (\text{of/ap} \ \text{DofM'} \ \text{DofN})). \]
Mechanizing Metatheory

* The **Twelf** implementation made LF relevant and useful!

* Frank Pfenning and Carsten Schürmann, starting from Eliot and Pf’s Elf and H and Pf’s LF implementation.

* Contributions by dozens: see twelf.org.

* Robust, industrial-strength proof system for mechanized meta-reasoning.
For me the crucial features of Twelf are:

- **Unification** and type inference / argument synthesis (Eliot, Pym).

- **Coverage** and **totality** checking for mechanization (Schürmann).

- Regular worlds classify **adequacy contexts**, hence provide **induction on canonical forms**.
Many meta-theorems are $\forall \exists$ statements over derivations (canonical forms).

** eg, for every reduction and every typing there is another typing

** for every typing, there is either a reduction or a canonicity derivation.

Schürmann developed a logic and prover for checking exhaustiveness and termination.
Mechanizing Metatheory

- Define a relation with input (\forall) and output (\exists) modes for arguments.

- Use pattern-matching a la ML to express the inductive steps of the proof.

- Specify the worlds (contexts) over which to induct (determines the canonical forms).

- Check coverage and totality for the relation over the canonical forms in that proof.
preserv : \text{step}\ E\ E' \rightarrow \text{of}\ E\ T \rightarrow \text{of}\ E'\ T \rightarrow \text{type}.
%mode preserv +Dstep +Dof -Dof'.

preserv-app-1 : preserv
 (\text{step-app-1}\ (DstepE1 : \text{step}\ E1\ E1'))
 (\text{of-app}\ (DofE2 : \text{of}\ E2\ T2)
 (DofE1 : \text{of}\ E1\ (\text{arrow}\ T2\ T))
)
 <- preserv DstepE1 DofE1 (DofE1' : \text{of}\ E1'\ (\text{arrow}\ T2\ T)).

preserv-app-beta : preserv
 (\text{step-app-beta}\ (Dval : \text{value}\ E2))
 (\text{of-app}\ (DofE2 : \text{of}\ E2\ T2)
 (\text{of-lam}\ (((x)\ [dx])\ DofE\ x\ dx)
 : \{x : \text{tm}\} \{dx : \text{of}\ x\ T2\} \text{of}\ (E\ x)\ T))
 (DofE\ E2\ DofE2).

%worlds () (preserv _ _ _).
%total D (preserv D _ _).
Mechanizing Metatheory

D. Lee, K. Crary, and H (POPL 07): A mechanically checked proof of safety for Standard ML.

About 80K lines of Twelf.

Done by “pair programming”, once per week over a semester.

Important: we were not able to use The Definition as-is!
Semantics of Standard ML

• LF imposes **hygiene** on logical systems.

 • Must be precise about **everything**.

 • Intolerant of “side conditions”.

• The Definition was no exception.

 • van Inwegen uncovered many issues.

 • Scoping rules, informal side conditions.
The Re-Definition of Standard ML

First, we had to **re-define** Standard ML.

- **Internal** type theory with well-behaved notions of binding and scope.

- **Dynamics** defined for the internal language using Plotkin’s SOS, not ES.

- **Statics** elaborates Standard ML into the internal language.
The Re-Definition of Standard ML

Second, we used Twelf to formalize the internal language (2K loc).

Borrowing from Dreyer, Stone PhD’s.

Progress and preservation proved as outlined earlier by totality checking.

about 30K loc
The Re-Definition of Standard ML

- Third, we defined an elaboration of Standard ML into the internal language (3k loc).

- Similar to “static semantics” of The Definition, but with typed internals.

- Fourth, we proved the static correctness of the elaboration (45k loc).

- Result is always well-typed, hence safe.
Trouble Spots

Two problems with representing PL’s and their metatheory in LF:

- State requires “manual” encoding of memory allocation and lookup.
- Must carry along all aspects of machine state at each transition.
- Threatens adequacy and complicates specifications.
Substructural Frameworks

- LF has been extended to substructural frameworks by Pfenning, et al:
 - Linear LF (Cervesato)
 - Ordered LF (Polakow)
 - Hybrid LF (Reed)
 - Concurrent LF (Watkins, Simmons)
- Celf provides substructural operational semantics.
_ : eval (newref E1) D
 -o {Exists d1:dest A. eval E1 d1 * fnewref d1 D}.
_ :
 return V1 D1 * fnewref D1 D
 -o { Exists c:dest A. @contains c V1 * return (cell c) D }.
_ :
 eval (deref E1) D
 -o {Exists d1 : dest (ref A). eval E1 d1 * fderef d1 D}.
_ :
 return (cell C1) D1 * contains C1 V1 * fderef D1 D
 -o { @contains C1 V1 * return V1 D }.
The Celf specification works beautifully for state, concurrency, continuations,

- Purely local specifications.

- Induces a transition system on contexts.

- But the worlds cannot be characterized as simply as in Twelf.

- eg, “no variable declared twice”
Neither LF nor Celf can handle disequality of references (locations).

- Mechanizing metatheory, e.g. prog+pres.
- Languages with equality of references.
- Celf cannot handle locally scoped (stack-allocated) assignables.
- Eg, Modernized Algol in H’s PFPL book.
Handling references

- J. Cheney’s Nominal LF adds symbols to LF.
- Admit disequality.
- Models references, channels, etc.
- See also Tiu and Miller’s generic quantifiers in λ-Prolog.
- Ideally, we’d like to have a Nominal Celf, with a meta-reasoning prover a la Twelf.
Further Developments

- The development of λ-Prolog by Miller, et al. has been enormously influential.

- Pattern unification, efficient implementation.

- Generic quantifiers, logical account of modularity.

- Cannot express higher-level judgments, which have proved very useful in LF.
Further Developments

- LF has influenced functional programming.
 - Delphin (Schürrmann, et al.)
 - Beluga (Pientka, Dunfield)
 - Polarization (Licata, Zeilberger, and H)
- Rabe has built a **module system** for Twelf.
- Pitts, Urban, et al.: Nominal Logic.
Some PhD’s On LF

- **Carnegie Mellon**
 - Conal Elliott
 - Penny Anderson
 - Iliano Cervesato
 - Robert Virga
 - Carsten Schürmann
 - Alberto Momigliano
 - Jeff Polakow
 - Brigitte Pientka
 - Jason Reed
 - William Lovas
 - Rob Simmons

- **Edinburgh**
 - David Pym
 - Philippa Gardner
 - Anna Salvesen

- **Penn (λ-Prolog)**
 - Gopalan Nadathur
 - Amy Felty
 - John Hannan
 - Josh Hodas
 - Ray MacDowell

- **Udine**
 - Merino Miculan

- **Cornell**
 - James Cheney
I feel fortunate to have been at the right place at the right time to help develop LF.

Thanks especially to my co-authors, and to Avron, Mason, and Pfenning, from whom I have learned a great deal.

I am astonished by how quickly 25 years has passed, and how much has been done in that seemingly short amount of time!