Computational Learning Theory

[read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension
- Mistake bounds
Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented
Prototypical Concept Learning Task

• Given:
 – Instances X: Possible days, each described by the attributes Sky, $AirTemp$, $Humidity$, $Wind$, $Water$, $Forecast$
 – Target function c: $EnjoySport : X \rightarrow \{0, 1\}$
 – Hypotheses H: Conjunctions of literals. E.g.
 $$\langle ?, Cold, High, ?, ?, ? \rangle.$$
 – Training examples D: Positive and negative examples of the target function
 $$\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle$$

• Determine:
 – A hypothesis h in H such that $h(x) = c(x)$ for all x in D?
 – A hypothesis h in H such that $h(x) = c(x)$ for all x in X?
Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher
 - Learner proposes instance \(x \), teacher provides \(c(x) \)

2. If teacher (who knows \(c \)) provides training examples
 - Teacher provides sequence of examples of form \(\langle x, c(x) \rangle \)

3. If some random process (e.g., nature) proposes instances
 - Instance \(x \) generated randomly, teacher provides \(c(x) \)
Sample Complexity: 1

Learner proposes instance x, teacher provides $c(x)$ (assume c is in learner’s hypothesis space H)

Optimal query strategy: play 20 questions

- pick instance x such that half of hypotheses in VS classify x positive, half classify x negative
- When this is possible, need $\lceil \log_2 |H| \rceil$ queries to learn c
- when not possible, need even more
Sample Complexity: 2

Teacher (who knows \(c \)) provides training examples
(assume \(c \) is in learner’s hypothesis space \(H \))

Optimal teaching strategy: depends on \(H \) used by learner

Consider the case \(H = \) conjunctions of up to \(n \)
boolean literals and their negations

\[(\text{AirTemp} = \text{Warm}) \land (\text{Wind} = \text{Strong}), \]
where \(\text{AirTemp}, \text{Wind}, \ldots \) each have 2 possible
values.

• if \(n \) possible boolean attributes in \(H \), \(n + 1 \)
examples suffice

• why?
Sample Complexity: 3

Given:

- set of instances \(X \)
- set of hypotheses \(H \)
- set of possible target concepts \(C \)
- training instances generated by a fixed, unknown probability distribution \(\mathcal{D} \) over \(X \)

Learner observes a sequence \(\mathcal{D} \) of training examples of form \(\langle x, c(x) \rangle \), for some target concept \(c \in C \)

- instances \(x \) are drawn from distribution \(\mathcal{D} \)
- teacher provides target value \(c(x) \) for each

Learner must output a hypothesis \(h \) estimating \(c \)

- \(h \) is evaluated by its performance on subsequent instances drawn according to \(\mathcal{D} \)

Note: probabilistic instances, noise-free classifications
True Error of a Hypothesis

Instance space X

Where c and h disagree

Definition: The true error (denoted $error_D(h)$) of hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random according to D.

$$error_D(h) \equiv \Pr_{x \in D}[c(x) \neq h(x)]$$
Two Notions of Error

Training error of hypothesis h with respect to target concept c

- How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

- How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?

- First consider when training error of h is zero (i.e., $h \in VS_{H,D}$)
Exhausting the Version Space

(r = training error, error = true error)

Definition: The version space $VS_{H,D}$ is said to be ε-exhausted with respect to c and D, if every hypothesis h in $VS_{H,D}$ has error less than ε with respect to c and D.

$$(\forall h \in VS_{H,D}) \text{ error}_D(h) < \varepsilon$$
How many examples will ϵ-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ-exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $\text{error}(h) \geq \epsilon$

If we want to this probability to be below δ

$$|H|e^{-\epsilon m} \leq \delta$$

then

$$m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))$$
Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least \((1 - \delta)\) that

\[
\text{every } h \text{ in } VS_{H,D} \text{ satisfies } error_D(h) \leq \epsilon
\]

Use our theorem:

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]

Suppose \(H\) contains conjunctions of constraints on up to \(n\) boolean attributes (i.e., \(n\) boolean literals). Then \(|H| = 3^n\), and

\[
m \geq \frac{1}{\epsilon} (\ln 3^n + \ln(1/\delta))
\]

or

\[
m \geq \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))
\]
How About *EnjoySport*?

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]

If \(H \) is as given in *EnjoySport* then \(|H| = 973\), and

\[
m \geq \frac{1}{\epsilon} (\ln 973 + \ln(1/\delta))
\]

... if want to assure that with probability 95%, \(VS \) contains only hypotheses with \(error_D(h) \leq .1 \), then it is sufficient to have \(m \) examples, where

\[
m \geq \frac{1}{.1} (\ln 973 + \ln(1/.05))
\]

\[
m \geq 10(\ln 973 + \ln 20)
\]

\[
m \geq 10(6.88 + 3.00)
\]

\[
m \geq 98.8
\]
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_D(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $\text{size}(c)$.
Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don’t assume $c \in H$

• What do we want then?
 – The hypothesis h that makes fewest errors on training data

• What is sample complexity in this case?

$$m \geq \frac{1}{2e^2} (\ln |H| + \ln(1/\delta))$$

derived from Hoeffding bounds:

$$Pr[error_D(h) > error_D(h) + \epsilon] \leq e^{-2m\epsilon^2}$$
Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.
Three Instances Shattered

Instance space X
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.
VC Dim. of Linear Decision Surfaces

(a)

(b)
Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ϵ-exhaust $VS_{H,D}$ with probability at least $(1 - \delta)$?

$$m \geq \frac{1}{\epsilon} \left(4 \log_2 (2/\delta) + 8VC(H) \log_2 (13/\epsilon) \right)$$
Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let’s consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution \mathcal{D}
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?
Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean literals

FIND-S:

- Initialize h to the most specific hypothesis $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots l_n \land \neg l_n$
- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h?
Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space
 CANDIDATE-ELIMINATION algorithm
- Classify new instances by majority vote of
 version space members

How many mistakes before converging to correct h?

- ... in worst case?
- ... in best case?
Optimal Mistake Bounds

Let $M_A(C')$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$M_A(C') \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted $Opt(C)$, is the minimum over all possible learning algorithms A of $M_A(C')$.

$$Opt(C) \equiv \min_{A \in \text{learning algorithms}} M_A(C')$$

$$VC(C') \leq Opt(C) \leq M_{\text{Halving}}(C') \leq \log_2(|C|).$$