Computational Learning Theory

[read Chapter 7]
[Suggested exercises: 7.1, 7.2, 7.5, 7.8]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension

Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

Prototypical Concept Learning Task

- Given:
 - Instances X: Possible days, each described by the attributes Sky, $AirTemp$, $Humidity$, $Wind$, $Water$, $Forecast$
 - Target function c: $EnjoySport : X \to \{0, 1\}$
 - Training examples D: Positive and negative examples of the target function $\langle x_1, c(x_1) \rangle, \ldots, \langle x_m, c(x_m) \rangle$

- Determine:
 - A hypothesis h in H such that $h(x) = c(x)$ for all x in D?
 - A hypothesis h in H such that $h(x) = c(x)$ for all x in X?

Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher
 - Learner proposes instance x, teacher provides $c(x)$
2. If teacher (who knows c) provides training examples
 - teacher provides sequence of examples of form $\langle x, c(x) \rangle$
3. If some random process (e.g., nature) proposes instances
 - instance x generated randomly, teacher provides $c(x)$
Sample Complexity: 1

Learner proposes instance \(x \), teacher provides \(c(x) \) (assume \(c \) is in learner’s hypothesis space \(H \))

Optimal query strategy: play 20 questions
- pick instance \(x \) such that half of hypotheses in \(V' \) classify \(x \) positive, half classify \(x \) negative
- When this is possible, need \(\lceil \log_2 |H| \rceil \) queries to learn \(c \)
- when not possible, need even more

Sample Complexity: 2

Teacher (who knows \(c \)) provides training examples (assume \(c \) is in learner’s hypothesis space \(H \))

Optimal teaching strategy: depends on \(H \) used by learner

Consider the case \(H \) = conjunctions of up to \(n \) boolean literals and their negations
- \(\text{e.g., } (\text{AirTemp} = \text{Warm}) \land (\text{Wind} = \text{Strong}) \), where \(\text{AirTemp, Wind, ...} \) each have 2 possible values.
- if \(n \) possible boolean attributes in \(H \), \(n + 1 \) examples suffice
- why?

Sample Complexity: 3

Given:
- set of instances \(X \)
- set of hypotheses \(H \)
- set of possible target concepts \(C \)
- training instances generated by a fixed, unknown probability distribution \(D \) over \(X \)

Learner observes a sequence \(D \) of training examples of form \((x,c(x)) \), for some target concept \(c \in C \)
- instances \(x \) are drawn from distribution \(D \)
- teacher provides target value \(c(x) \) for each

Learner must output a hypothesis \(h \) estimating \(c \)
- \(h \) is evaluated by its performance on subsequent instances drawn according to \(D \)

Note: probabilistic instances, noise-free classifications

True Error of a Hypothesis

Definition: The true error (denoted \(\text{error}_D(h) \)) of hypothesis \(h \) with respect to target concept \(c \) and distribution \(D \) is the probability that \(h \) will misclassify an instance drawn at random according to \(D \).

\[
\text{error}_D(h) = \Pr_{x \sim D}[c(x) \neq h(x)]
\]
Two Notions of Error

Training error of hypothesis h with respect to target concept c

- How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

- How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h?
- First consider when training error of h is zero (i.e., $h \in V_{S_{H,D}}$)

How many examples will ϵ-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ-exhausted (with respect to c) is less than

$$|H|e^{-\epsilon m}$$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $\text{error}(h) \geq \epsilon$

If we want this probability to be below δ

$$|H|e^{-\epsilon m} \leq \delta$$

then

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Exhausting the Version Space

Definition: The version space $V_{S_{H,D}}$ is said to be ϵ-exhausted with respect to c and D, if every hypothesis h in $V_{S_{H,D}}$ has error less than ϵ with respect to c and D.

$$\forall h \in V_{S_{H,D}} \text{ error}_D(h) < \epsilon$$

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1 - \delta)$ that every h in $V_{S_{H,D}}$ satisfies $\text{error}_D(h) \leq \epsilon$?

Use our theorem:

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals). Then $|H| = 3^n$, and

$$m \geq \frac{1}{\epsilon}(n \ln 3 + \ln(1/\delta))$$

or

$$m \geq \frac{1}{\epsilon}(3^n + \ln(1/\delta))$$
How About *EnjoySport*?

\[m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta)) \]

If \(H \) is as given in *EnjoySport* then \(|H| = 973 \), and

\[m \geq \frac{1}{\epsilon} (\ln 973 + \ln(1/\delta)) \]

... if we want to assure that with probability 95%, \(VS \) contains only hypotheses with error\(_p(h) \leq 1 \), then it is sufficient to have \(m \) examples, where

\[m \geq \frac{1}{\epsilon} (\ln 973 + \ln(1/.05)) \]
\[m \geq 10(\ln 973 + \ln 20) \]
\[m \geq 10(6.88 + 3.00) \]
\[m \geq 98.8 \]

PAC Learning

Consider a class \(C \) of possible target concepts defined over a set of instances \(X \) of length \(n \), and a learner \(L \) using hypothesis space \(H \).

Definition: \(C \) is **PAC-learnable** by \(L \) using \(H \) if for all \(c \in C \), distributions \(D \) over \(X \), \(\epsilon \) such that \(0 < \epsilon < 1/2 \), and \(\delta \) such that \(0 < \delta < 1/2 \), learner \(L \) will with probability at least \((1 - \delta)\) output a hypothesis \(h \in H \) such that error\(_p(h) \leq \epsilon \), in time that is polynomial in \(1/\epsilon, 1/\delta, n \) and size\(_c(c)\).

Shattering a Set of Instances

Definition: a **dichotomy** of a set \(S \) is a partition of \(S \) into two disjoint subsets.

Definition: a set of instances \(S \) is **shattered** by hypothesis space \(H \) if and only if for every dichotomy of \(S \) there exists some hypothesis in \(H \) consistent with this dichotomy.

Three Instances Shattered

Instance space \(X \)
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, \(VC(H) \), of hypothesis space \(H \) defined over instance space \(X \) is the size of the largest finite subset of \(X \) shattered by \(H \). If arbitrarily large finite sets of \(X \) can be shattered by \(H \), then \(VC(H) \equiv \infty \).

VC Dim. of Linear Decision Surfaces

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to \(\epsilon \)-exhaust \(V_{S_{H,D}} \) with probability at least \((1 - \delta) \)?

\[
m \geq \frac{1}{\epsilon} \left(4 \log_2 (2/\delta) + 8VC(H) \log_2(13/\epsilon) \right)
\]