Evaluating Hypotheses

[Read Ch. 5]
[Recommended exercises: 5.2, 5.3, 5.4]

• Sample error, true error
• Confidence intervals for observed hypothesis error
• Estimators
• Binomial distribution, Normal distribution, Central Limit Theorem
• Paired t tests
• Comparing learning methods
Two Definitions of Error

The true error of hypothesis h with respect to target function f and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$error_\mathcal{D}(h) \equiv \Pr_{x \in \mathcal{D}}[f(x) \neq h(x)]$$

The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

$$error_S(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x) \neq h(x))$$

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

How well does $error_S(h)$ estimate $error_\mathcal{D}(h)$?
Problems Estimating Error

1. **Bias:** If S is training set, $\text{error}_S(h)$ is optimistically biased

 \[
 \text{bias} \equiv E[\text{error}_S(h)] - \text{error}_D(h)
 \]

 For unbiased estimate, h and S must be chosen independently

2. **Variance:** Even with unbiased S, $\text{error}_S(h)$ may still vary from $\text{error}_D(h)$
Example

Hypothesis h misclassifies 12 of the 40 examples in S

$$error_S(h) = \frac{12}{40} = .30$$

What is $error_D(h)$?
Estimators

Experiment:

1. choose sample S of size n according to distribution \mathcal{D}

2. measure $error_S(h)$

$error_S(h)$ is a random variable (i.e., result of an experiment)

$error_S(h)$ is an unbiased estimator for $error_{\mathcal{D}}(h)$

Given observed $error_S(h)$ what can we conclude about $error_{\mathcal{D}}(h)$?
Confidence Intervals

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $error_D(h)$ lies in interval

$$error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}}$$
Confidence Intervals

If

• S contains n examples, drawn independently of h and each other
• $n \geq 30$

Then

• With approximately $N\%$ probability, $\text{error}_D(h)$
 lies in interval

\[
\text{error}_S(h) \pm z_N \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}
\]

where

<table>
<thead>
<tr>
<th>$N%$</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_N</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
$error_S(h)$ is a Random Variable

Rerun the experiment with different randomly drawn S (of size n)

Probability of observing r misclassified examples:

$$P(r) = \frac{n!}{r!(n-r)!} \cdot error_D(h)^r \cdot (1 - error_D(h))^{n-r}$$
Binomial Probability Distribution

\[P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r} \]

Probability \(P(r) \) of \(r \) heads in \(n \) coin flips, if \(p = \text{Pr(heads)} \)

- Expected, or mean value of \(X \), \(E[X] \), is
 \[E[X] = \sum_{i=0}^{n} i P(i) = np \]

- Variance of \(X \) is
 \[\text{Var}(X) = E[(X - E[X])^2] = np(1-p) \]

- Standard deviation of \(X \), \(\sigma_X \), is
 \[\sigma_X = \sqrt{E[(X - E[X])^2]} = \sqrt{np(1-p)} \]
Normal Distribution Approximates Binomial

$\text{error}_S(h)$ follows a *Binomial* distribution, with

- mean $\mu_{\text{error}_S(h)} = \text{error}_D(h)$
- standard deviation $\sigma_{\text{error}_S(h)}$

$$
\sigma_{\text{error}_S(h)} = \sqrt{\frac{\text{error}_D(h)(1 - \text{error}_D(h))}{n}}
$$

Approximate this by a *Normal* distribution with

- mean $\mu_{\text{error}_S(h)} = \text{error}_D(h)$
- standard deviation $\sigma_{\text{error}_S(h)}$

$$
\sigma_{\text{error}_S(h)} \approx \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}
$$
Normal Probability Distribution

\[
p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}
\]

The probability that \(X \) will fall into the interval \((a, b)\) is given by

\[
\int_a^b p(x) \, dx
\]

- Expected, or mean value of \(X \), \(E[X] \), is
 \[
 E[X] = \mu
 \]
- Variance of \(X \) is
 \[
 Var(X) = \sigma^2
 \]
- Standard deviation of \(X \), \(\sigma_X \), is
 \[
 \sigma_X = \sigma
 \]
80% of area (probability) lies in $\mu \pm 1.28\sigma$

N\% of area (probability) lies in $\mu \pm z_N\sigma$

<table>
<thead>
<tr>
<th>$N%$:</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_N:</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Confidence Intervals, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \geq 30$

Then

- With approximately 95% probability, $\text{error}_S(h)$ lies in interval

$$\text{error}_D(h) \pm 1.96 \sqrt{\frac{\text{error}_D(h)(1 - \text{error}_D(h))}{n}}$$

equivalently, $\text{error}_D(h)$ lies in interval

$$\text{error}_S(h) \pm 1.96 \sqrt{\frac{\text{error}_D(h)(1 - \text{error}_D(h))}{n}}$$

which is approximately

$$\text{error}_S(h) \pm 1.96 \sqrt{\frac{\text{error}_S(h)(1 - \text{error}_S(h))}{n}}$$
Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1 \ldots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2. Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance $\frac{\sigma^2}{n}$.
Calculating Confidence Intervals

1. Pick parameter \(p \) to estimate
 - \(\text{error}_D(h) \)
2. Choose an estimator
 - \(\text{error}_S(h) \)
3. Determine probability distribution that governs estimator
 - \(\text{error}_S(h) \) governed by Binomial distribution, approximated by Normal when \(n \geq 30 \)
4. Find interval \((L, U)\) such that \(N\% \) of probability mass falls in the interval
 - Use table of \(z_N \) values
Difference Between Hypotheses

Test h_1 on sample S_1, test h_2 on S_2

1. Pick parameter to estimate

$$d \equiv \text{error}_D(h_1) - \text{error}_D(h_2)$$

2. Choose an estimator

$$\hat{d} \equiv \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_{\hat{d}} \approx \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$

4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval

$$\hat{d} \pm z_N \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$
Paired t test to compare h_A, h_B

1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do
 $$
 \delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)
 $$

3. Return the value $\bar{\delta}$, where
 $$
 \bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i
 $$

$N\%$ confidence interval estimate for d:
 $$
 \bar{\delta} \pm t_{N,k-1} \ s_{\bar{\delta}}
 $$
 $$
 s_{\bar{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}
 $$

Note δ_i approximately Normally distributed
Comparing learning algorithms L_A and L_B

What we’d like to estimate:

$$E_{S \in \mathcal{D}}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$

where $L(S)$ is the hypothesis output by learner L

i.e., the expected difference in true error between hypotheses output by learners L_A and L_B, when trained using randomly selected training sets S drawn according to distribution \mathcal{D}.

But, given limited data D_0, what is a good estimator?

- could partition D_0 into training set S and training set T_0, and measure

 $$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$

- even better, repeat this many times and average the results (next slide)
Comparing learning algorithms L_A and L_B

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

 use T_i for the test set, and the remaining data for training set S_i

 • $S_i \leftarrow \{D_0 - T_i\}$
 • $h_A \leftarrow L_A(S_i)$
 • $h_B \leftarrow L_B(S_i)$
 • $\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$

3. Return the value $\bar{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$
Comparing learning algorithms L_A and L_B

Notice we’d like to use the paired t test on $\tilde{\delta}$ to obtain a confidence interval

but not really correct, because the training sets in this algorithm are not independent (they overlap!)

more correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_D(L_A(S)) - error_D(L_B(S))]$$

instead of

$$E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

but even this approximation is better than no comparison