Outline

- Why Machine Learning?
- What is a well-defined learning problem?
- An example: learning to play checkers
- What questions should we ask about Machine Learning?
Why Machine Learning

- Recent progress in algorithms and theory
- Growing flood of online data
- Computational power is available
- Budding industry

Three niches for machine learning:

- Data mining: using historical data to improve decisions
 - medical records → medical knowledge
- Software applications we can’t program by hand
 - autonomous driving
 - speech recognition
- Self customizing programs
 - Newsreader that learns user interests
Typical Datamining Task

Data:

\[\text{Patient103}_{\text{time}=1} \quad \rightarrow \quad \text{Patient103}_{\text{time}=2} \quad \rightarrow \quad \cdots \quad \rightarrow \quad \text{Patient103}_{\text{time}=n} \]

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: no
- PreviousPrematureBirth: no
- Ultrasound: ?
- Elective C−Section: ?
- Emergency C−Section: ?

\[\text{Patient103}_{\text{time}=1} \quad \rightarrow \quad \text{Patient103}_{\text{time}=2} \quad \rightarrow \quad \cdots \quad \rightarrow \quad \text{Patient103}_{\text{time}=n} \]

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: yes
- PreviousPrematureBirth: no
- Ultrasound: abnormal
- Elective C−Section: no
- Emergency C−Section: ?

\[\text{Patient103}_{\text{time}=1} \quad \rightarrow \quad \text{Patient103}_{\text{time}=2} \quad \rightarrow \quad \cdots \quad \rightarrow \quad \text{Patient103}_{\text{time}=n} \]

- Age: 23
- FirstPregnancy: no
- Anemia: no
- Diabetes: no
- PreviousPrematureBirth: no
- Ultrasound: ?
- Elective C−Section: no
- Emergency C−Section: yes

Given:

- 9714 patient records, each describing a pregnancy and birth
- Each patient record contains 215 features

Learn to predict:

- Classes of future patients at high risk for Emergency Cesarean Section
Datamining Result

Data:

\[
\begin{array}{l}
\text{Patient103}_{\text{time=1}} \quad \rightarrow \quad \text{Patient103}_{\text{time=2}} \quad \rightarrow \quad \cdots \quad \rightarrow \quad \text{Patient103}_{\text{time=n}} \\
\end{array}
\]

\begin{itemize}
 \item Age: 23
 \item FirstPregnancy: no
 \item Anemia: no
 \item Diabetes: no
 \item PreviousPrematureBirth: no
 \item Ultrasound:
 \item Elective C–Section:
 \item Emergency C–Section:
 \item \ldots
\end{itemize}

\begin{itemize}
 \item Age: 23
 \item FirstPregnancy: no
 \item Anemia: no
 \item Diabetes: YES
 \item PreviousPrematureBirth: no
 \item Ultrasound: abnormal
 \item Elective C–Section: no
 \item Emergency C–Section:
 \item \ldots
\end{itemize}

\begin{itemize}
 \item Age: 23
 \item FirstPregnancy: no
 \item Anemia: no
 \item Diabetes: no
 \item PreviousPrematureBirth: no
 \item Ultrasound:
 \item Elective C–Section: no
 \item Emergency C–Section: \textbf{Yes}
 \item \ldots
\end{itemize}

One of 18 learned rules:

If No previous vaginal delivery, and Abnormal 2nd Trimester Ultrasound, and Malpresentation at admission
Then Probability of Emergency C–Section is 0.6

Over training data: \(26/41 = .63\),
Over test data: \(12/20 = .60\)
Credit Risk Analysis

Data:

Customer103: (time=t_0)
Years of credit: 9
Loan balance: $2,400
Income: $52k
Own House: Yes
Other delinquent accts: 2
Max billing cycles late: 3
Profitable customer?: ?
...

Customer103: (time=t_1)
Years of credit: 9
Loan balance: $3,250
Income: ?
Own House: Yes
Other delinquent accts: 2
Max billing cycles late: 4
Profitable customer?: ?
...

Customer103: (time=t_n)
Years of credit: 9
Loan balance: $4,500
Income: ?
Own House: Yes
Other delinquent accts: 3
Max billing cycles late: 6
Profitable customer?: No
...

Rules learned from synthesized data:

If Other-Delinquent-Accounts > 2, and
Number-Delinquent-Billing-Cycles > 1
Then Profitable-Customer? = No
[Deny Credit Card application]

If Other-Delinquent-Accounts $= 0$, and
(Income $> 30k$) OR (Years-of-Credit > 3)
Then Profitable-Customer? = Yes
[Accept Credit Card application]
Other Prediction Problems

Customer purchase behavior:

Customer103: (time=t0)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- MS Products: Word
- Computer: 386 PC
- Purchase Excel?: ?

Customer103: (time=t1)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- MS Products: Word
- Computer: Pentium
- Purchase Excel?: ?

...

Customer103: (time=tn)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- MS Products: Word
- Computer: Pentium
- Purchase Excel?: Yes

Customer retention:

Customer103: (time=t0)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- Checking: $5k
- Savings: $15k
- Current−customer?: yes

Customer103: (time=t1)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- Checking: $20k
- Savings: $0
- Current−customer?: yes

...

Customer103: (time=tn)
- Sex: M
- Age: 53
- Income: $50k
- Own House: Yes
- Checking: $0
- Savings: $0
- Current−customer?: No

Process optimization:

Product72: (time=t0)
- Stage: mix
- Mixing−speed: 60rpm
- Viscosity: 1.3
- Fat content: 15%
- Density: 2.8
- Spectral peak: 2800
- Product underweight?: ??

Product72: (time=t1)
- Stage: cook
- Temperature: 325
- Viscosity: 3.2
- Fat content: 12%
- Density: 1.1
- Spectral peak: 3200
- Product underweight?: ??

...

Product72: (time=tn)
- Stage: cool
- Fan−speed: medium
- Viscosity: 1.3
- Fat content: 12%
- Density: 1.2
- Spectral peak: 3100
- Product underweight?: Yes

...
Problems Too Difficult to Program by Hand

ALVINN [Pomerleau] drives 70 mph on highways
Software that Customizes to User

http://www.wisewire.com
Where Is this Headed?

Today: tip of the iceberg

- First-generation algorithms: neural nets, decision trees, regression ...
- Applied to well-formatted database
- Budding industry

Opportunity for tomorrow: enormous impact

- Learn across full mixed-media data
- Learn across multiple internal databases, plus the web and newsfeeds
- Learn by active experimentation
- Learn decisions rather than predictions
- Cumulative, lifelong learning
- Programming languages with learning embedded?
Relevant Disciplines

- Artificial intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Philosophy
- Psychology and neurobiology
- Statistics
- ...
What is the Learning Problem?

Learning = Improving with experience at some task

• Improve over task T,
• with respect to performance measure P,
• based on experience E.

E.g., Learn to play checkers

• T: Play checkers
• P: % of games won in world tournament
• E: opportunity to play against self
Learning to Play Checkers

- T: Play checkers
- P: Percent of games won in world tournament
- What experience?
- What exactly should be learned?
- How shall it be represented?
- What specific algorithm to learn it?
Type of Training Experience

- Direct or indirect?
- Teacher or not?

A problem: is training experience representative of performance goal?
Choose the Target Function

- \(\text{ChooseMove} : \text{Board} \rightarrow \text{Move} \) ??
- \(V : \text{Board} \rightarrow \mathbb{R} \) ??
- ...
Possible Definition for Target Function V

- if b is a final board state that is won, then $V(b) = 100$
- if b is a final board state that is lost, then $V(b) = -100$
- if b is a final board state that is drawn, then $V(b) = 0$
- if b is a not a final state in the game, then $V(b) = V(b')$, where b' is the best final board state that can be achieved starting from b and playing optimally until the end of the game.

This gives correct values, but is not operational
Choose Representation for Target Function

- collection of rules?
- neural network?
- polynomial function of board features?
- ...

A Representation for Learned Function

\[w_0 + w_1 \cdot bp(b) + w_2 \cdot rp(b) + w_3 \cdot bk(b) + w_4 \cdot rk(b) + w_5 \cdot bt(b) + w_6 \cdot rt(b) \]

- \(bp(b) \): number of black pieces on board \(b \)
- \(rp(b) \): number of red pieces on \(b \)
- \(bk(b) \): number of black kings on \(b \)
- \(rk(b) \): number of red kings on \(b \)
- \(bt(b) \): number of red pieces threatened by black (i.e., which can be taken on black’s next turn)
- \(rt(b) \): number of black pieces threatened by red
Obtaining Training Examples

- $V(b)$: the true target function
- $\hat{V}(b)$: the learned function
- $V_{train}(b)$: the training value

One rule for estimating training values:

- $V_{train}(b) \leftarrow \hat{V}(Successor(b))$
Choose Weight Tuning Rule

LMS Weight update rule:
Do repeatedly:

• Select a training example b at random

 1. Compute $error(b)$:

 $$error(b) = V_{train}(b) - \hat{V}(b)$$

 2. For each board feature f_i, update weight w_i:

 $$w_i \leftarrow w_i + c \cdot f_i \cdot error(b)$$

c is some small constant, say 0.1, to moderate the rate of learning
Design Choices

1. Determine Type of Training Experience
 - Games against experts
 - Games against self
 - Table of correct moves

2. Determine Target Function
 - Board ➝ move
 - Board ➝ value

3. Determine Representation of Learned Function
 - Polynomial
 - Linear function of six features
 - Artificial neural network

4. Determine Learning Algorithm
 - Gradient descent
 - Linear programming

Completed Design
Some Issues in Machine Learning

• What algorithms can approximate functions well (and when)?
• How does number of training examples influence accuracy?
• How does complexity of hypothesis representation impact it?
• How does noisy data influence accuracy?
• What are the theoretical limits of learnability?
• How can prior knowledge of learner help?
• What clues can we get from biological learning systems?
• How can systems alter their own representations?