Bagging Classifiers

[Breiman, ML journal, 1996]

Bagging = Bootstrap aggregating

Bootstrap sampling: given set D containing m training examples

- Create D^i by drawing m examples at random with replacement from D
- D^i expected to leave out .37 of examples from D

Bagging:

- Create k bootstrap samples $D^1 \ldots D^k$
- Train distinct classifier on each D^i
- Classify new instance by classifier vote (equal weights)
Bagging Experiment

[Breiman, ML journal, 1996]

Given sample S of labeled data, do 100 times and report average

1. Divide S randomly into test set T (10 %) and training set D (90 %)

2. Learn decision tree from D.
 - $e_S \leftarrow$ error of tree on T

3. Do 50 times: Create bootstrap set D^i, learn decision tree, prune using D.
 - $e_B \leftarrow$ error of majority vote using trees to classify T
Bagging

insert table 2 and table 10 from Brieman
Bagging - When Should this Help?

When learner is *unstable*

- Learner is unstable if small change to training set causes large change in output hypothesis (e.g., decision trees, neural networks, not \(k \) nearest neighbor)

- Experimentally, bagging can help substantially for unstable learners, can somewhat degrade results for stable learners
Bagging

Consider real valued target function, use mean instead of majority vote to combine classifier outputs

\[\phi_A(x) = E_D \phi(x, D) \]

where \(\phi(x, D) \) is base classifier, \(\phi_A \) is aggregated classifier

\[E_D(y - \phi(x, D))^2 = y^2 - 2yE_D\phi(x, D) + E_D\phi^2(x, D) \]

now using \(E_D\phi(x, D) = \phi_A(x) \), and \(E\varepsilon^2 \geq (E\varepsilon)^2 \),

\[E_D(y - \phi(x, D))^2 \geq (y - \phi_A(x))^2 \]

so we expect a lower error for the bagged predictor \(\phi_A \)
Weighted Majority
a_i denotes the i^{th} prediction algorithm in the pool A of algorithms. w_i denotes the weight associated with a_i.

- For all i initialize $w_i \leftarrow 1$
- For each training example $\langle x, c(x) \rangle$
 * Initialize q_0 and q_1 to 0
 * For each prediction algorithm a_i
 - If $a_i(x) = 0$ then $q_0 \leftarrow q_0 + w_i$
 - If $a_i(x) = 1$ then $q_1 \leftarrow q_1 + w_i$
 * If $q_1 > q_0$ then predict $c(x) = 1$
 - If $q_0 > q_1$ then predict $c(x) = 0$
 - If $q_1 = q_0$ then predict 0 or 1 at random for $c(x)$
 * For each prediction algorithm a_i in A do
 - If $a_i(x) \neq c(x)$ then $w_i \leftarrow \beta w_i$
Weighted Majority

[Relative mistake bound for WEIGHTED-MAJORITY] Let D be any sequence of training examples, let A be any set of n prediction algorithms, and let k be the minimum number of mistakes made by any algorithm in A for the training sequence D. Then the number of mistakes over D made by the WEIGHTED-MAJORITY algorithm using $\beta = \frac{1}{2}$ is at most

$$2.4(k + \log_2 n)$$