Bagging Classifiers

[Breiman, ML journal, 1996]
Bagging = Bootstrap aggregating
Bootstrap sampling: given set D containing m training examples
 - Create D^i by drawing m examples at random with replacement from D
 - D^i expected to leave out $.37$ of examples from D
Bagging:
 - Create k bootstrap samples D^1, \ldots, D^k
 - Train distinct classifier on each D^i
 - Classify new instance by classifier vote (equal weights)

Bagging - When Should this Help?

When learner is unstable
 - Learner is unstable if small change to training set causes large change in output hypothesis (e.g., decision trees, neural networks, not k nearest neighbor)
 - Experimentally, bagging can help substantially for unstable learners, can somewhat degrade results for stable learners

Bagging Experiment

[Breiman, ML journal, 1996]
Given sample S of labeled data, do 100 times and report average
1. Divide S randomly into test set T (10%) and training set D (90%)
2. Learn decision tree from D.
 - $e_s \leftarrow$ error of tree on T
3. Do 50 times: Create bootstrap set D^i, learn decision tree, prune using D.
 - $e_B \leftarrow$ error of majority vote using trees to classify T
Bagging

Consider real valued target function, use mean instead of majority vote to combine classifier outputs

\[\phi_A(x) = E_D \phi(x, D) \]

where \(\phi(x, D) \) is base classifier, \(\phi_A \) is aggregated classifier

\[E_D(y - \phi(x, D))^2 = y^2 - 2yE_D \phi(x, D) + E_D \phi^2(x, D) \]

now using \(E_D \phi(x, D) = \phi_A(x) \), and \(EZ^2 \geq (EZ)^2 \),

\[E_D(y - \phi(x, D))^2 \geq (y - \phi_A(x))^2 \]

so we expect a lower error for the bagged predictor \(\phi_A \).

Weighted Majority

[Relative mistake bound for Weighted-Majority] Let \(D \) be any sequence of training examples, let \(A \) be any set of \(n \) prediction algorithms, and let \(k \) be the minimum number of mistakes made by any algorithm in \(A \) for the training sequence \(D \). Then the number of mistakes over \(D \) made by the Weighted-Majority algorithm using \(\beta = \frac{1}{2} \) is at most

\[2.4(k + \log_2 n) \]