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Hearing Is Believing

Many feature extraction methods that have been 
used for automatic speech recognition (ASR) 
have either been inspired by analogy to biologi-
cal mechanisms, or at least have similar 
 functional properties to biological or psy-

choacoustic properties for humans or other mammals. These 
methods have in many cases provided significant reductions in 
errors, particularly for degraded signals, and are currently experi-
encing a resurgence in community interest. Many of them have 
been quite successful, and others that are still in early stages of 
application still seem to hold great promise, given the existence 
proof of amazingly robust natural audio processing systems.

The common framework for state-of-the-art ASR systems has 
been fairly stable for about two decades now: a transformation of 
a short-term power spectral estimate is computed every 10 ms 
and then is used as an  observation vector for Gaussian-mixture-
based HMMs that have been trained on as much data as possible, 
augmented by prior probabilities for word sequences generated 
by smoothed counts from many examples. The most probable 

word sequence is  chosen, taking into account both acoustic and 
language probabilities. While these systems have improved great-
ly over time, much of the improvement has arguably come from 
the  availability of more data, more detailed models to take advan-
tage of the greater amount of data, and larger computational 
resources to train and evaluate the models. Still, other improve-
ments have come from the increased use of discriminative train-
ing of the models. Additional gains have come from changes to 
the front end (e.g., normalization and compensation schemes), 
and/or from adaptation methods that could be implemented 
either in the stored models or through equivalent transforma-
tions of the incoming features. Even improvements obtained 
through discriminant training [such as with the minimum phone 
error (MPE) method] have been matched in practice by discrimi-
nant transformations of the features [such as feature MPE 
(fMPE)].

System performance is crucially dependent on advances in 
feature extraction, or on modeling methods that have their equiv-
alents in feature transformation approaches. With degraded 
acoustical conditions (or, more generally, when there are mis-
matches between training and test conditions), it is even more 
important to generate features that are insensitive to nonlinguis-
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tic sources of variability. For instance, relative spectra (RASTA) 
<AU: please check that the expansion of RASTA is correct as 
given> processing and cepstral mean subtraction both have the 
primary effect of reducing sensitivity to linear channel effects. 
Significant problems of this variety remain—even as seemingly 
simple a task as the recognition of digit strings becomes extreme-
ly difficult when the utterances are corrupted by real-world noise 
and/or reverberation.

While machines struggle to cope with even modest amounts 
of acoustical variability, human beings can recognize speech 
remarkably well in similar conditions; a solution to the difficult 
problem of environmental robustness does indeed exist. While a 
number of fundamental attributes of auditory processing remain 
poorly understood, there are many  instances in which analysis of 
psychoacoustical or physiological data can inspire signal process-
ing research. This is particularly helpful because providing a par-
ticular conceptual framework for feature- extraction research 
makes feasible a search through a potentially very large set of 
possible  techniques.

In many cases, researchers develop feature-extraction 
approaches without any conscious mimicking of any biological 
function. Even for such approaches, a post hoc examination of 
the method often reveals similar behavior. 

In summary, the feature extraction stage of speech recogni-
tion is important historically and is the subject of much current 
research, particularly to promote robustness to acoustic 
 disturbances such as additive noise and reverberation. 
Biologically inspired and biologically related approaches are an 
important subset of feature extraction methods for ASR. 

BACKGROUND 

STATE OF THE ART FOR ASR IN NOISE  
VERSUS HUMAN PERFORMANCE
Human beings have amazing capabilities for recognizing speech 
under conditions that still confound our machine implementa-
tions. In most cases ASR is still more errorful, even for speech 
signals with high signal-to-noise ratios (SNRs) [41]. <AU: please 
note that as per magazine style, references have been reformat-
ted to numerals in the text. Please check throughout> More 
recent results show a reduced but still significant gap [47], [15]. 
For instance, the lowest word error rates on a standard conversa-
tional telephone recognition task are in the midteens, but inter-
annotator error rates for humans listening to speech from this 
corpus have been reported to be around 4% for careful transcrip-
tion. As Lippmann noted, for the 5,000-word Wall Street Journal 
task, human listeners’ error rate was tiny and  virtually the same 
for clean and noisy speech (for additive automotive noise at 10-dB 
SNR). Even the most effective current noise robustness strategies 
cannot approach this. There is, however, a caveat: human beings 
must pay close attention to the task to achieve these results. 

Human hearing does much more than speech recognition. In 
addition, the nature of information processing by computers is 
inherently different from biological computation. Consequently, 
when implementing ASR mechanisms inspired by biology, we 

must take care to understand the function of each enhancement. 
Our goals as speech researchers are fundamentally different from 
those of biologists, whose aim is to  create models that are func-
tionally equivalent to the real thing. 

What follows is a short summary of mammalian auditory pro-
cessing, including the general response of the cochlea and the 
auditory nerve to sound, basic binaural analysis, some important 
attributes of feature extraction in the brain stem and primary 
auditory cortex, along with some relevant basic  psychoacoustical 
results. We encourage the reader to consult texts and reviews 
such as [37] and [44] for a more complete exposition of these top-
ics.

PERIPHERAL PROCESSING

PERIPHERAL FREQUENCY SELECTIVITY
The initial part of the auditory chain is a series of connected 
parts, moving signals forward. Time-varying air pressure 
 associated with sound impinges on the ears, inducing small 
inward and outward motion of the tympanic membrane 
 (eardrum). The eardrum is connected mechanically to the three 
bones in the middle ear, the malleus, incus, and stapes (or, more 
commonly, the hammer, anvil, and stirrup). The mechanical 
vibrations of the stapes induce wave motion in fluid in the spiral 
tube known as the cochlea. The basilar membrane is a structure 
that runs the length of the cochlea. It has a density and stiffness 
that vary along its length, causing its resonant frequency to vary 
as well. Affixed to the human basilar membrane are about 15,000 
“hair cells,” which  innervate about 30,000 spiral ganglion cells 
whose axons form  the individual fibers of the auditory nerve. 
Because of the  spatially specific nature of this transduction, each 
fiber of  the auditory nerve only responds to a narrow range of 
 frequencies. 

Sound at a particular frequency elicits vibration along a local-
ized region of the basilar membrane, which in turn causes the 
initiation of neural impulses along fibers of the auditory nerve 
that are attached to that region of the basilar membrane. The fre-
quency for which a fiber of the auditory nerve is the most sensi-
tive is referred to as the characteristic frequency (CF) of that fiber. 
This portion of the auditory system is  frequently modeled as a 
bank of bandpass filters (despite the many nonlinearities in the 
physiological processing), and the “bandwidth” of the filters 
appears to be approximately constant for fibers with CFs above 1 
kHz when plotted as a function of log frequency. In other words, 
these physiological filters have a nominal bandwidth that is 
roughly proportional to center  frequency. The bandwidth of the 
filters is roughly constant at lower frequencies. This frequency-
based or “tonotopic” organization of individual parallel channels 
is generally maintained from the auditory nerve to higher  centers 
of processing in the brain stem and the auditory cortex.

The basic description above is highly simplified, ignoring non-
linearities in the cochlea and in the hair-cell response. In addi-
tion, there are actually two types of hair cells with  systematic 
differences in response. The “inner” hair cells  transduce and pass 
on the spectral representation of the signal produced by the basi-
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lar membrane to higher levels in the auditory system. The 
“outer” hair cells, which constitute the larger fraction of the total 
population, have a response that is affected in part by efferent 
feedback from higher centers of neural  processing. They amplify 
the incoming signals nonlinearly, with low-level inputs amplified 
more than more intense ones, achieving a compression in 
dynamic range. Spikes  generated by  fibers of the auditory nerve 
occur stochastically, and hence  the response of the nerve fibers 
must be characterized statistically. 

THE RATE-INTENSITY FUNCTION
While the peripheral auditory system can roughly be modeled 
as a sequence of operations from the original arrival of sound 
pressure at the outer ear to its representation at the auditory 
nerve (ignoring the likely importance of feedback), these 
 components are not linear. In particular, the rate-intensity 
 function is roughly S-shaped, with a low and fairly constant rate 
of response for intensities below a threshold, a limited range of 
about 20 dB in which the response rate increases in roughly 
 linear proportion to the signal intensity, and a saturation region 
for higher intensities. Since the range of intensities between 
the  lowest detectable sounds and those that can cause pain 
(and damage) is about 120 dB,  compression is a critical part of 
hearing. The small dynamic range of individual fibers is  mitigated 
to some extent by the variations in fiber threshold intensities at 
each CF, as well as the use of a range of CFs to  represent sounds. 

SYNCHRONY OF TEMPORAL RESPONSE  
TO INCOMING SOUNDS
For low-frequency tones, e.g., below 5 kHz (in cats), auditory 
neurons are more likely to fire in phase with the stimulus, even 
though the exact firing times remain stochastic in nature. This 
results in a response that roughly follows the shape of the input 
signal on the average, at least when the signal amplitude is 
 positive. This “phase locking” permits the auditory system 
to compare arrival times of signals to the two ears at low frequen-
cies, a critical part of the function of binaural spatial  localization. 
However, this property may also be important for robust process-
ing of the signal from each individual ear. The extent to which the 
neural response at each CF is synchronized to the nearest har-
monic of the fundamental frequency of a vowel, called the aver-
aged localized synchronized rate (ALSR), is comparatively stable 
over a range of input intensities, while the mean rate of firing can 
vary  significantly. This  suggests that the timing information asso-
ciated with the response to low- frequency components can be 
substantially more robust to intensity and other sources of signal 
variability than the mean rate of neural response. Note that the 
typical  signal processing measures used in ASR are much more 
like mean-rate measures, and entirely ignore this timing-based 
information.

LATERAL SUPPRESSION
For more complex signals than pure tones, the response to sig-
nals at a given frequency may be  suppressed or inhibited by ener-
gy at adjacent frequencies. The presence of a second tone over a 

range of frequencies surrounding the CF inhibits the response to 
the probe tone at CF, even for some intensities of the second tone 
that would be below threshold if it had been presented in isola-
tion. This form of  “lateral suppression” enhances the response to 
changes in the signal content with respect to frequency, just as 
overshoots and undershoots in the transient response have the 
effect of enhancing the response to changes in signal level over 
time. 

As an example of the potential benefit that may be derived 
from such processing, Figure 1(a) depicts the spectrogram of an 
utterance from the TIMIT database for clean speech (left column) 
and speech in the presence of additive white noise at an SNR of 
10 dB (right column). Figure 1(b) depicts a spectrogram of the 
same utterance derived from standard MFCC features. Finally, 
Figure 1(c) shows reconstructed spectrograms of the same utter-
ance derived from a physiologically based model of the auditory-
nerve response to sound proposed by [51] that incorporates the 
above phenomena. It can be seen that the formant trajectories are 
more sharply defined, and that the impact of the additive noise on 
the display is substantially reduced.

PROCESSING AT MORE CENTRAL LEVELS

SENSITIVITY TO INTERAURAL TIME DELAY  
AND INTENSITY DIFFERENCES
Two important cues for human localization of the direction of 
arrival of a sound are the interaural time difference (ITD) and 
interaural intensity difference (IID). ITDs are most useful at low 
frequencies and IIDs are only significant at higher frequencies for 
spatial aliasing and physical diffraction, respectively. Units in the 
superior olivary complex and the inferior colliculus appear to 
respond maximally to a single “characteristic” ITD, sometimes 
referred to as the characteristic delay (CD) of the unit. An ensem-
ble of such units with a range of CFs and CDs can  produce a dis-
play that represents the interaural cross- correlation of the signals 
to the two ears after the frequency-dependent and nonlinear pro-
cessing of the auditory periphery. 

SENSITIVITY TO AMPLITUDE MODULATION 
AND MODULATION FREQUENCY ANALYSIS
Physiological recordings in cochlear nuclei, the inferior collicu-
lus, and the auditory cortex have revealed the presence of units 
that appear to be sensitive to the modulation frequencies of sinu-
soidally amplitude-modulated (SAM) tones (e.g., [22]). In some of 
these cases, response would be maximum at a particular modula-
tion frequency, independently of the carrier frequency of the SAM 
tone complex, and some of these units are organized anatomical-
ly according to best modulation frequency. These results have 
lead to speculation that the so-called  modulation spectrum may 
be a useful and consistent way to describe the dynamic temporal 
characteristics of complex signals like speech after the peripheral 
 frequency analysis. However, psychoacoustic results show that 
lower modulation frequencies appear to have greater  significance 
for phonetic identification. 
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SPECTROTEMPORAL RECEPTIVE FIELDS
Finally, the firing patterns of neurons in the A1 cortical spiking in 
ferrets show that  neurons in A1 (primary auditory cortex) are 
highly tuned to specific spectral and temporal modulations (as 
well as being tonotopically organized by frequency, as in the audi-
tory nerve) [9]. The sensitivity patterns of these neurons are often 
referred to as spectrotemporal receptive fields (STRFs) and are 
often illustrated as color temperature patterns on an image of the 
time-frequency plane.

PSYCHOPHYSICAL PHENOMENA THAT HAVE MOTIVATED 
AUDITORY MODELS 
Psychoacoustical as well as physiological results have  enlightened 
us about the functioning of the auditory system. In fact, interest-
ing auditory phenomena are frequently first revealed through 
psychoacoustical experimentation, with the probable physiologi-
cal mechanism underlying the perceptual observation identified 
at a later date. We briefly discuss several sets of basic psycho-
acoustic observations that have played a major role in auditory 
modeling.

AUDITORY FREQUENCY RESOLUTION
We have noted above that many physiological results suggest that 
the auditory system performs a frequency analysis, which is typi-
cally approximated in auditory modeling by a bank of linear fil-

ters. Beginning with the pioneering efforts of Harvey Fletcher 
and colleagues in the 1940s auditory researchers have attempted 
to determine the shape of these “filters” and their effective band-
width (frequently referred to as the critical band) through the use 
of many clever psychoacoustical experiments. 

Three distinct frequency scales have emerged from these 
experiments that describe the putative bandwidths of the auditory 
filters. The Bark scale (named after Heinrich Barkhausen, who 
proposed the first subjective measurements of loudness) is based 
on the results of traditional masking experiments [58]. The Mel 
scale (referring to the word “melody”) is based on pitch compari-
sons [54]. The equivalent rectangular bandwith (ERB) scale was 
differing procedures [38]. Despite the differences in how they 
were developed, the Bark, Mel, and ERB scales describe a very 
similar dependence of auditory bandwidth on frequency, implying 
constant-bandwidth filters at low  frequencies and constant-Q fil-
ters at higher frequencies,  consistent with the physiological data. 
All common models of auditory  processing begin with a bank of 
filters whose center frequencies and bandwidths are based on one 
of these three  frequency scales.

THE PSYCHOACOUSTICAL TRANSFER FUNCTION
The original  psychoacousticians were physicists and philosophers 
of the 19th century who sought to develop mathematical func-
tions that related sensation and perception, such as the depen-

Clean Speech Speech at 10-dB SNR

(a)

(b)

(c)

[FIG1] (a) Original spectrogram: MATLAB spectrogram of speech in the presence of additive white noise at an SNR of 10 dB. (b) Mel-
freqency cepstral coefficients (MFCCs) spectrogram: Reconstructed spectrogram of the utterance after traditional MFCC processing. (c) 
Peripheral auditory spectrogram: Reconstructed spectrogram of the utterance after peripheral auditory processing based on the model 
by Zhang et al. [57]. The columns represent responses to clean speech (left) and speech in white noise at an SNR of 10 dB (right). <AU: Is 
figure taken from [57] or another source? If so, please confirm you have permission to reuse it and provide credit line>
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dence of the subjective loudness of a sound on its physical 
intensity. Two different “psychophysical” scales for intensity have 
emerged over the years. The first, developed by Gustav Fechner, 
was based on the 19th-century empirical  observations of Weber, 
who observed that the just-noticeable increment in intensity was 
a constant fraction of the reference intensity level. MFCCs and 
other common features use a  logarithmic  transformation that is 
consistent with this  observation as well as the assumption that 
equal increments of perceived intensity should be marked by 
equal intervals along the perceptual scale. 

Many years after Weber’s observations, Stevens [53]  proposed 
an alternate loudness scale, which implicitly assumes that per-
ceived ratios in intensity should represent equal ratios (rather 
than increments) on the perceptual scale. This suggests a nonlin-
earity in which the incoming  signal intensity is raised to a power 
to approximate the perceived loudness. This approach is support-
ed by psychophysical experiments in which subjects directly esti-
mate perceived intensity in many sensory modalities, with an 
exponent of approximately 0.33 fitting the results for experiments 
in hearing. This compressive power-law nonlinearity has been 
incorporated into PLP processing and other feature extraction 
schemes.

AUDITORY THRESHOLDS AND PERCEIVED LOUDNESS
The human threshold of hearing varies with frequency, as 
the auditory  system achieves the greatest sensitivity between 
about 1 and 4 kHz with a minimum threshold of about –5 dB SPL 
[11]. The threshold of hearing increases for both lower and high-
er frequencies of stimulation. The human response to acoustical 
stimulation undergoes a transition from hearing to pain at a level 
of very roughly 110 dB SPL for most frequencies. The frequency 
dependence of the threshold of hearing combined with the rela-
tive  frequency independence of the threshold of pain causes the 
 perceived loudness of a narrowband sound to depend on both 
its intensity and frequency. 

NONSIMULTANEOUS MASKING
Nonsimultaneous masking occurs when the presence of a  masker 
elevates the threshold intensity for a target that  precedes or fol-
lows it. Forward masking refers to inhibition of the perception of 
a target after the masker is switched off. When a masker follows 
the probe in time, the effect is called backward masking. Masking 
effects decrease as the time between masker and probe increases, 
but can persist for 100 ms or more [37]. 

THE PRECEDENCE EFFECT
Another important attribute of human binaural hearing is 
that binaural localization is dominated by the first-arriving com-
ponents of a complex sound. This phenomenon, which is referred 
to as the precedence effect, is clearly helpful in enabling the per-
ceived location of a source in a reverberant environment to 
remain constant, as it is dominated by the characteristics of the 
components of the sound which arrive directly from the sound 
source while suppressing the potential impact of later-arriving 
reflected components from other directions. In addition to its 

role in maintaining perceived constancy of direction of arrival in 
reverberation, the precedence effect is also believed by some  to 
improve speech intelligibility in reverberant environments, 
although it is difficult to separate the potential impact of the pre-
cedence effect from that of conventional binaural unmasking.

BIOLOGICALLY RELATED METHODS IN CONVENTIONAL 
FEATURE EXTRACTION FOR ASR
The overwhelming majority of speech recognition systems today 
make use of features that are based on either  MFCCs [7] or fea-
tures based on perceptual linear  predictive (PLP) analysis of 
speech [16]. In this section, we discuss how MFCC and PLP coef-
ficients are already heavily influenced by knowledge of biological 
signal processing. Both MFCC and PLP features make explicit or 
implicit use of the frequency warping implied by psychoacoustical 
experimentation [the Mel scale for MFCC parameters and the 
Bark scale for PLP analysis as well as psychoacoustically motivat-
ed amplitude compression (the log scale for MFCC, and a power-
law compression for PLP coefficients)]. The PLP features include 
additional attributes of auditory processing including more 
detailed modeling of the asymmetries in frequency response 
implied by psychoacoustical measurements of auditory frequency 
selectivity [48], pre-emphasis based on the loudness contours of 
Fletcher and Munson [11], among other phenomena. Finally, 
both MFCC and PLP features have mechanisms to reduce the 
sensitivity to changes in the long-term average log power spectra, 
through the use of cepstral mean normalization or RASTA pro-
cessing [18]. 

While the primary focus of this article is on ASR  algorithms 
that are inspired by mammalian recognition  (especially human), 
we would be remiss in not mentioning a  now-standard method 
that is based on a simplified model of speech production. What is 
commonly called vocal tract length normalization (VTLN) is a 
further scaling of the frequency axis based on the notion that 
vocal tract resonances are higher for shorter vocal tracts. In prac-
tice, vocal tract measurements are not available, and a true cus-
tomization of the resonance structure for an individual would be 
quite complicated. This is typically implemented using a simpli-
fied frequency scaling function, which is most commonly a piece-
wise-linear approach warping function to account for edge effects 
as suggested by Cohen et al. [6], obtaining the best values of the 
free parameters statistically.

FEATURE EXTRACTION BASED ON MODELS  
OF THE AUDITORY SYSTEM
We review and discuss in this section the trends and results 
obtained over three decades involving feature extraction based on 
computational models of the auditory system. In citing  specific 
research results, we have attempted to adopt a broad perspective 
that includes representative work from most of the relevant con-
ceptual categories. Nevertheless, we recognize that in a brief 
review such as this it is necessary to omit some important con-
tributors. We apologize in advance to the many researchers 
whose relevant work is not included here.
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“CLASSICAL” AUDITORY MODELS OF THE 1980s
Much work in  feature extraction based on physiology is based on 
three seminal auditory models developed in the 1980s by Seneff 
[49], Ghitza [14], and Lyon [31]. All of these models included a 
description of processing at the cochlea and the auditory nerve 
that is far more physiologically accurate and detailed than the 
processing used in MFCC and PLP feature extraction, including 
more realistic auditory filtering, more realistic nonlinearities 
relating stimulus intensity to auditory response rate, synchrony 
extraction at low frequencies, lateral suppression (in Lyon’s 
model), and higher-order processing through the use of either 
cross-correlation processing or autocorrelation processing. The 
early stages of all three models are depicted in a general sense by 
the blocks in Figure 2(a). Specifically, Seneff’s model  proposed a 
generalized synchrony detector (GSD) that implicitly provided 
the autocorrelation value at lags equal to the reciprocal of the 
center frequency of each processing channel. Ghitza proposed 
ensemble-interval histogram (EIH) processing, which developed 
a spectral representation by computing times between a set of 
amplitude-threshold crossing of the incoming signal after 
peripheral processing. Lyon’s model [31] included many of the 
same components found in the Seneff and Ghitza models, pro-
ducing a display referred to as a cochleagram, which serves as a 
more physiologically accurate alternative to the familiar spectro-
gram. Lyon also proposed a correlogram representation based on 
the running autocorrelation function at each frequency of the 
incoming signal, again after peripheral processing, as well as the 
use of interaural cross correlation to provide the separation of 
incoming signals by direction of arrival [32], building on earlier 
theories by Jeffress [21] and Licklider [29]. 

There was very little quantitative evaluation of the three audi-
tory models in the 1980s, in part because they were 
 computationally costly for that time. In general, these approaches 
provided no benefit in recognizing clean speech compared to 
MFCC/PLP representations, but they did improve recognition 
accuracy when the input was degraded by noise and/or reverbera-
tion (e.g., [14] and [40]). In general, work on auditory modeling in 
the 1980s failed to gain traction, not only because of the compu-
tational cost, but also because of a poor match between the statis-
tics of the features and the statistical assumptions built into 
standard ASR modeling. In addition, there were more pressing 
fundamental shortcomings in speech recognition technology that 
first needed to be resolved. Despite this general trend, there was 
at least one significant instantiation of an auditory model in a 
major large vocabulary system in the 1980s, specifically, IBM’s 
Tangora [5]. This front end incorporated, in addition to most of 
the other properties above, a form of short-term adaptation 
inspired by the auditory system. Other important contemporary 
work included the auditory models of Deng and Geisler [8], 
Payton [43], and Patterson et al. [42].

CONTEMPORARY ENABLING TECHNOLOGIES 
AND CURRENT TRENDS IN FEATURE EXTRACTION
While the classical models described in the previous section are 
all more or less complete attempts to model auditory processing 

at least at the auditory-nerve level to varying degrees of abstrac-
tion, there have been a number of other current trends that have 
been motivated directly or indirectly by auditory processing that 
have influenced feature extraction in a more general fashion, 
even for features that are not characterized specifically as repre-
senting auditory models. 

MULTISTREAM PROCESSING
The articulation index model of speech perception, which was 
suggested by Fletcher [10] and French and Steinberg [12], and 
revived by Allen [2], modeled phonetic speech recognition as aris-
ing from independent estimators for critical bands. This led to a 
great deal of interest initially in the development of multiband 
systems based on this view of independent detectors per critical 
band that were developed to improve robustness of speech recog-

Linear Frequency Analysis

Nonlinear Rectification

Spectral and Temporal
Contrast Enhancement

Possible Noise or
Reverberation Suppression

Incoming Signal

Possible Synchrony-Based
Frequency Estimation

Enhanced Spectrotemporal Stream

(a)

STRFsSpectral
Analysis

Temporal
Analysis

Enhanced Spectrotemporal Stream

Nonlinear Combination Mechanisms Training
Data

Auditory Features
(b)

[FIG2] (a) Generalized organization of contemporary feature 
extraction procedures that are analogous to auditory periphery 
function.  Not all blocks are present in all feature extraction 
approaches, and the organization may vary.  (b) Processing of 
the spectrotemporal feature extraction by spectral analysis, 
temporal analysis, or the more general case of (possibly many) 
STRFs. These can incorporate long temporal support, can 
comprise a few or many streams, and can be combined simply or 
with discriminative mechanisms incorporating labeled training 
data.
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nition, particularly for narrowband noise (e.g., [20]). This 
approach in turn can be generalized to the consideration of 
fusion of information from parallel detectors that are pre-
sumed to provide complementary information about the 
incoming speech. This information can be combined at the 
input (feature) level [39], at the level at which the HMM 
search takes  place [33], or at the output level by merging 
hypothesis lattices [34]. The incorporation of multiple streams 
with different modulation properties can be done in a number 
of ways, many of which require nonlinear processing. This 
integration is depicted in a general sense in Figure 2(b). 

LONG-TIME TEMPORAL EVOLUTION
An important parallel trend has been the development of fea-
tures that are based on the  temporal evolution of the enve-
lopes of the outputs of the  bandpass filters that are part of any 
description of the auditory system. Human sensitivity to over-
all temporal modulation has also been documented with per-
ceptual experiments. As noted earlier, spectrotemporal 
receptive fields have been observed in animal cortex, and these 
fields are sometimes much more extended in time than the 
typical short-term spectral analysis used in calculating MFCCs 
or PLP. 

Initially, information about temporal evolution has been 
used to implement features based on frequency components of 
these temporal envelopes, which is referred to as the modula-
tion spectrum [27]. Subsequently, various groups have charac-
terized these patterns using nonparametric models as in the 
TRAPS and HATS methods <AU: please spell out TRAPS and 
HATS> (e.g., [19]) or using parametric all-pole models such 
as frequency-domain linear prediction (FDLP) (e.g., [3]).  It is 
worth noting that RASTA, mentioned earlier, was developed to 
emphasize the critical temporal modulations, and in so doing 
emphasize transitions (as was suggested in  perceptual studies 
such as Furui [13]), and reduce sensitivity to irrelevant steady 
state convolutional factors. More recently, temporal modula-

tion in subbands was normalized to improve ASR in reverber-
ant environments [30]. 

SPECTROTEMPORAL RECEPTIVE FIELDS
Two-dimensional (2-D) Gabor filters are obtained by multiply-
ing a 2-D sinewave by a 2-D Gaussian. Their frequency 
response can be used to model the spectrotemporal receptive 
fields of A1 neurons. They also have the attractive properties of 
being self-similar, and they can be generated from a mother 
wavelet by dilation and rotation. Mesgarani et al. [36] have 
used 2-D Gabor filters successfully in implementing features 
for speech/nonspeech discrimination and similar approaches 
have also been used to extract features for ASR by multiple 
researchers (e.g., [28]). In many of these cases, multilayer per-
ceptrons (MLPs) were used to transform the filter outputs into 
a form that is more amenable to use by Gaussian mixture-
based HMMs, typically using the tandem approach [17]. 

Figure 3 compares typical analysis regions in time and 
 frequency that are examined in 1) conventional frame-based 
spectral analysis, 2) the long-term temporal analysis employed 
by TRAPS processing, and 3) the generalized spectrotemporal 
analysis that can be obtained using STRFs. The central col-
umn of Figure 4 illustrates a pair of typical model STRFs 
obtained from 2-D Gabor filters. As can be seen, each of these 
filters elicit responses from different aspects of the input spec-
trogram, resulting in the parallel representations seen in the 
column on the right.

FEATURE EXTRACTION WITH TWO OR MORE “EARS”
All of the attributes of auditory processing cited above are 
essentially single-channel in nature. It is well known that 
human listeners compare information from the two ears to 
localize sources in space and separate sound sources that are 
arriving from different directions, a process generally known 
as binaural hearing. Source localization and segregation is 
largely accomplished by estimating the ITD and the IID of the 
signals arriving at the two ears as reviewed in [51]. In addi-
tion, the precedence effect, which refers to emphasis placed on 
the early- arriving components of the ITD and IID, can sub-
stantially improve sound localization and speech understand-
ing in  reverberant and other environments. 

Feature extraction systems based on binaural processing 
have taken on several forms. The most common application of 
binaural processing is through the use of systems that provide 
selective reconstruction of spatialized signals that have been 
degraded by noise and/or reverberation by selecting those 
spectrotemporal components after short-time Fourier analysis 
that are believed to be dominated by the desired sound source 
(e.g., [46], [1], and [23]). These systems typically develop bina-
ry or continuous masks in the time-frequency plane for sepa-
rating the  signals, using the ITD or interaural phase difference 
(IPD) of the signals as the basis for the separation. 
Correlation-based emphasis is a second approach that is based 
on binaural hearing that operates in a fashion similar to mul-
timicrophone beamforming, but with additional nonlinear 
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[FIG3] Comparison of the standard analysis window used in 
MFCC, PLP, and other feature sets, which computes features over 
a vertical slice of the time-frequency plane (green box) with the 
horizontal analysis window used in TRAPS <AU: please spell out 
TRAPS> analysis (white box), and the oblique ellipse that 
represents a possible STRF for detecting an oblique formant 
trajectory (blue ellipse).
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enhancement of the desired signal based on interaural cross 
correlation of signals after a model of peripheral auditory pro-
cessing [52]. Finally,  several groups have demonstrated that 
processing based on the precedence effect, both at the monau-
ral level (e.g., [35]) and at the binaural level (e.g., [23]), 
 typically through the use of enhancement of the leading edge 
of envelopes of the outputs of the auditory filters. This type of 
processing has been shown to be particularly effective in 
 reverberant environments. 

CONTEMPORARY AUDITORY MODELS
Auditory modeling enjoyed a renaissance during the 1990s and 
beyond for several reasons. First, the cost of computation 
became much less of a factor because of continued develop-
ments in computer hardware and systems software. Similarly, 
the development of efficient techniques to learn the parame-
ters of Gaussian mixture models for observed feature distribu-
tions mitigated the problem of mismatch between the 
statistics of the  incoming data and the assumptions underly-
ing the stored models, and techniques for discriminative train-
ing potentially provide effective ways to incorporate features 
with very different statistical properties. We briefly cite a small 
number of  representative complete models of the peripheral 
auditory system as examples of how the concepts discussed 
above can be incorporated into complete feature extraction 
systems. These feature extraction approaches were selected 

because they span most of the auditory processing phenomena 
cited above; again, we remind the reader that this list is far 
from exhaustive.

TCHORZ AND KOLLMEIER
Tchorz and Kollmeier [59] developed an early “modern” physi-
ologically motivated feature extraction system, updating the 
classical auditory modeling elements. In addition to the basic 
stages of filtering and nonlinear rectification, their model also 
included adaptive compression loops that provided enhance-
ment of transients, some forward and backward masking, and 
short-term adaptation. These  elements also had the effect of 
imparting a specific filter for the modulation spectrum, with 
maximal response to modulations in the spectral envelope 
occurring in the neighborhood of 6 Hz. This model was initial-
ly evaluated using a database of isolated German digits with 
additive noise of different types, and achieved significant error 
rate reductions in comparison to MFCCs for all of the noisy 
conditions. It has also maintained good performance in a vari-
ety of other evaluations.

KIM, LEE, AND KIL
A number of researchers have proposed ways to obtain an 
improved spectral representation based on neural timing 
information. One example is the zero-crossing peak analysis 
(ZCPA) proposed by [26], which can be considered to be a sim-
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scale, producing the parallel representations as in (b). 



IE
EE

Pr
oo
f

IEEE SIGNAL PROCESSING MAGAZINE   [10]   NOVEMBER 2012

plification of the level-crossing methods developed by Ghitza. 
The ZCPA approach develops a spectral estimate from a histo-
gram of the inverse time between successive zero crossings in 
each channel after peripheral bandpass filtering, weighted by 
the amplitude of the peak between those crossings. This 
approach demonstrates improved robustness for ASR of isolat-
ed Korean words in the presence of various types of additive 
noise. The ZCPA approach is functionally similar to aspects of 
Sheikhzadeh and Deng’s earlier model [50], which also devel-
ops a histogram of the interpeak intervals of the putative 
instantaneous firing rates of auditory-nerve fibers, and weights 
the histogram according to the amplitude of the initial peak in 
the interval. Their model makes use of the very detailed com-
posite auditory model proposed by Deng and Geisler [8]. 

KIM AND STERN
Kim and Stern [25] <AU: please check reference number here 
and update in reference section> described a feature set called 
power normalized cepstral coefficients (PNCCs), incorporating 
relevant physiological phenomena in a computationally effi-
cient fashion. PNCC processing includes 1) traditional pre-
emphasis and short-time Fourier transformation, 2) 
integration of the squared energy of the STFT outputs using 
gammatone frequency weighting, 3) “medium-time” nonlinear 
processing that suppresses the effects of additive noise and 
room reverberation, 4) a power-function nonlinearity with 
exponent 1/15, and 5) generation of cepstral-like coefficients 
using a discrete cosine transform (DCT) and mean normaliza-
tion. For the most part, noise and reverberation suppression is 
accomplished by a nonlinear series of operations that accom-
plish running noise suppression and temporal contrast 
enhancement, working in a “medium-time” context with anal-
ysis intervals on the order of 50–150 ms. PNCC processing has 
been found by the CMU group and independent researchers to 
outperform baseline processing as well as several systems 
developed specifically for noise robustness such as the ETSI 
<AU: can ETSI be spelled out?> advanced front end (AFE). 
This approach with minor modifications is also quite effective 
in reverberation [23]. <AU: please check reference number is 
correct>

CHI, RU, AND SHAMMA
In a seminal paper, Chi et al. [4] presented a new abstract 
model of the putative representation of sound at both the 
peripheral level and in the auditory cortex, based on the 
research by Shamma’s group and others. The model describes 
a representation with three independent  variables: auditory 
frequency, “rate” (characterizing temporal modulation), and 
“scale” (characterizing spectral modulations), as would be per-
formed by successive stages of wavelet processing. The model 
relates this representation to feature extraction at the level of 
the brain stem and the cortex, including detectors based on 
STRFs, incorporating a cochlear filterbank at the input to the 
STRF filtering. Chi et al. also generated speech from the 
model outputs. 

RAVURI
In his 2011 thesis, Ravuri describes a range of  experiments 
incorporating over 100 2-D Gabor filters, each implementing a 
single STRF, and each with its own  discriminatively trained 
neural network to generate noise-insensitive features for ASR. 
The STRF parameters were chosen to span a range of useful 
values for rate and scale, as determined by many experiments, 
and then were applied separately to each critical band. The 
system thus incorporated multiple streams comprising dis-
criminative transformations of STRFs, many of which also 
were focused on long temporal evolution. The effectiveness of 
the representation was demonstrated for Aurora2 noisy digits 
and for a noisy version of the Numbers 95 data set.

SUMMARY
Feature extraction methods based on an understanding of 
both auditory physiology and psychoacoustics have been 
incorporated into ASR systems for decades. In recent years, 
there has been a renewed interest in the development of signal 
processing procedures based on much more detailed charac-
terization of hearing by humans and other mammals. It is 
becoming increasingly apparent that the careful implementa-
tion of physiologically based and perceptually based signal pro-
cessing can provide  substantially increased robustness in 
situations in which speech signals are degraded by interfering 
noise of all types, channel effects, room reverberation, and 
other sources of distortion. And the fact that humans can hear 
and understand speech, even under conditions that confound 
our current machine recognizers, makes us believe that there 
is more to be gained through a greater understanding of 
human speech recognition—hearing is believing.
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 [SP]
CALLOUTS

SYSTEM PERFORMANCE IS CRUCIALLY 
DEPENDENT ON ADVANCES IN FEATURE 

EXTRACTION, OR ON MODELING METHODS 
THAT HAVE THEIR EQUIVALENTS IN FEATURE 

TRANSFORMATION APPROACHES. 

WHEN IMPLEMENTING ASR MECHANISMS 
INSPIRED BY BIOLOGY, WE MUST TAKE 

CARE TO UNDERSTAND THE FUNCTION OF 
EACH ENHANCEMENT.  

TWO IMPORTANT CUES FOR HUMAN 
LOCALIZATION OF THE DIRECTION OF 

ARRIVAL OF A SOUND ARE THE INTERAURAL 
TIME DIFFERENCE AND INTERAURAL 

INTENSITY DIFFERENCE.

ANOTHER IMPORTANT ATTRIBUTE 
OF HUMAN BINAURAL HEARING IS 
THAT BINAURAL LOCALIZATION IS 

DOMINATED BY THE FIRST-ARRIVING 
COMPONENTS OF A COMPLEX SOUND.  

AN IMPORTANT PARALLEL TREND HAS BEEN 
THE DEVELOPMENT OF FEATURES THAT ARE 
BASED ON THE  TEMPORAL EVOLUTION OF 
THE ENVELOPES OF THE OUTPUTS OF THE 

 BANDPASS FILTERS THAT ARE PART OF ANY 
DESCRIPTION OF THE AUDITORY SYSTEM. 

IN RECENT YEARS, THERE HAS BEEN A 
RENEWED INTEREST IN THE DEVELOPMENT OF 
SIGNAL PROCESSING PROCEDURES BASED ON 
MUCH MORE DETAILED CHARACTERIZATION 

OF HEARING BY HUMANS AND OTHER 
MAMMALS. 


