1 Introduction

In abstract machine code of the kind we have discussed so far, a variable of a given name can refer to different values even in straight-line code. For example, in a code fragment such as

\begin{verbatim}
1: i ← 0
...
k: if (i < 0) then error else continue
\end{verbatim}

we can apply constant propagation of 0 to the condition (turning into a goto continue) only if we know that the definition of \(i \) in line 1 is the only one that reaches line \(k \). It is possible that \(i \) is redefined either in the region from 1 to \(k \), or somewhere in the rest of the program followed by a backwards jump. It was the purpose of the reaching definitions analysis in to determine whether this is the case. If lines 1-\(k \) are part of a single basic block, then our task is simpler: we only need to check whether there is an intervening definition of \(i \) within the basic block.

An alternative is to relabel variables in the code so that each variable is defined only once in the program text. If the program has this form, called static single assignment (SSA), then we can perform constant propagation immediately in the example above without further checks. There are other program analyses and optimizations for which it is convenient to have this property, so it has become a de facto standard intermediate form in many compilers and compiler tools such as LLVM.

In this lecture we develop SSA, first for straight-line code and then for code containing loops and conditionals. Our approach to SSA is not entirely standard, although the results are the same on control flow graphs that can arise from source programs in the language we compile.
2 Basic Blocks

As before, a basic block is a sequence of instructions with one entry point and one exit point. In particular, from nowhere in the program do we jump into the middle of the basic block, nor do we exit the block from the middle. In our language, the last instruction in a basic block should therefore be a return, goto, or if. On the inside of a basic block we have what is called straight-line code, namely, a sequence of moves or binary operations.

It is easy to put basic blocks into SSA form. For each variable, we keep a generation counter to track which definition of a variable is currently in effect. We initialize this to 0 for any variable live at the beginning of a block. Then we traverse the block forward, replacing every use of a variable with its current generation. When we see a redefinition of variable we increment its generation and proceed.

As an example, we consider the following C0 program on the left and its translation into a single basic block on the right.

```c
int dist(int x, int y) {  
  x = x * x;  
  y = y * y;  
  return isqrt(x+y);  
}  

dist(x,y):  
-------------  
  x <- x * x  
  y <- y * y  
  t0 <- x + y  
  t1 <- isqrt(t0)  
  return t1
```

Here `isqrt` is an integer square root function previously defined. We have assumed a new form of instruction

\[d \leftarrow f(s_1, \ldots, s_n) \]

where each of the sources \(s_i \) is a constant or variable, and the destination \(d \) is another variable. We have also marked the beginning of the function with a parameterized label that tracks the variables that may be live in the body of the function.

The parameters \(x \) and \(y \) start at generation 0. They are defined implicitly because they obtain a value from the arguments to the call of `dist`.

```c
    dist(x0,y0):  
-------------  x/0, y/0  
  x <- x * x  
  y <- y * y  
  t0 <- x + y  
  t1 <- isqrt(t0)  
  return t1
```

We mark where we are in the traversal with a line, and indicate there the current generation of each variable. The next line uses \(x \), which becomes \(x_0 \), but is also defines \(x \), which therefore becomes the next generation of \(x \), namely \(x_1 \).
dist(x0,y0):
 x1 <- x0 * x0
 y <- y * y
 t0 <- x + y
 t1 <- isqrt(t0)
 return t1

The next line is processed the same way.

dist(x0,y0):
 x1 <- x0 * x0
 y1 <- y0 * y0
 y <- y * y
 t0 <- x + y
 t1 <- isqrt(t0)
 return t1

At the following line, t0 is a new temp. The way we create instructions, temps are defined only once. We therefore do not have to create a new generation for them. If we did, it would of course not change the outcome of the conversion. Skipping ahead now, we finally obtain

dist(x0,y0):
 x1 <- x0 * x0
 y1 <- y0 * y0
 t0 <- x1 + y1
 t1 <- isqrt(t0)
 return t1

We see that, indeed, each variable is defined (assigned) only once, where the parameters x0 and y0 are implicitly defined when the function is called and the others explicitly in the body of the function. It is easy to see that the original program and its SSA form will behave identically.
3 Loops

To appreciate the difficulty and solution of how to handle more complex programs, we consider the example of the exponential function, where $p(b, e) = b^e$ for $e \geq 0$.

```c
int pow(int b, int e)
//@requires e >= 0;
{
    int r = 1;
    while (e > 0)
        //@loop_invariant e >= 0;
        // r*b^e remains invariant
        {
            r = r * b;
            e = e - 1;
        }
    return r;
}
```

We translate this to the following abstract machine code, which is comprised of basic blocks:

```machine
pow(b,e):
    r <- 1
loop:
    if (e > 0) then done else body
body:
    r <- r * b
e <- e - 1
goto loop
done:
    return r
```

There are two ways to reach the label `loop`: when we first enter the loop, or from the end of the loop body. This means the variable e in the conditional branch really could refer to either the procedure argument, or the value of e after the decrement operation in the loop body. Therefore, our straightforward idea for SSA conversion of straight line code no longer works.

The key idea is to parameterized labels (the jump targets) with the variables that are live in the block that follows. The variant of liveness necessary here can be calculated with respect to the block-structured AST – it is not necessary to use the more potentially expensive liveness analysis based on dataflow. One can also safely, but redundantly, just use all variables, or all variables that are declared and
defined at that point in the program. We use this approach in the following example. Labels l occurring as targets in \texttt{goto} l or \texttt{if} (−) \texttt{then} l \texttt{else} l' are then given matching arguments.

\begin{verbatim}
pow(b,e):
 r <- 1
 goto loop(b,e)

loop(b,e,r):
 if (e > 0)
 then body(b,e,r)
 else done(b,e,r)

body(b,e,r):
 r <- r * b
 e <- e - 1
 goto loop(b,e,r)

done(b,e,r):
 return r
\end{verbatim}

Next, we convert each block into SSA form with the previous algorithm, but using a global generation counter throughout. An occurrence in a label in a jump \texttt{goto} $l(\ldots,x,\ldots)$ is seen as a \textit{use} of x, while an occurrence of a variable in in a jump target $l(\ldots,x,\ldots)$ is seen as a \textit{definition} of x. Applying this to the first block we obtain

\begin{verbatim}
pow(b0,e0):
 r0 <- 1
 goto loop(b0,e0,r0)
--------------------------- b/0, e/0, r/0
loop(b,e,r):
 if (e > 0)
 then body(b,e,r)
 else done(b,e,r)

body(b,e,r):
 r <- r * b
 e <- e - 1
 goto loop(b,e,r)

done(b,e,r):
 return r
\end{verbatim}
Since we encounter a new definition of b, e, and r we advance all three generations and proceed with the next two blocks.

```plaintext
pow(b0,e0):
    r0 <- 1
    goto loop(b0,e0,r0)

loop(b1,e1,r1):
    if (e1 > 0)
        then body(b1,e1,r1)
    else done(b1,e1,r1)

body(b2,e2,r2):
    r3 <- r2 * b2
    e3 <- e2 - 1
    goto loop(b2,e3,r3)

-------------------- b/2, e/3, r/3

done(b,e,r):
    return r

Continuing through both the last block, we obtain:

```plaintext
pow(b0,e0):
 r0 <- 1
 goto loop(b0,e0,r0)

loop(b1,e1,r1):
 if (e1 > 0)
 then body(b1,e1,r1)
 else done(b1,e1,r1)

body(b2,e2,r2):
 r3 <- r2 * b2
 e3 <- e2 - 1
 goto loop(b2,e3,r3)

done(b3,e4,r4):
 return r4

First, we verify that this code does indeed have the SSA property: each variable is assigned at most once, even counting implicit definitions at the parameterized labels $\text{pow}(b0, e0)$, $\text{loop}(b1, e1, r1)$, $\text{body}(b2, e2, r2)$, and $\text{done}(b3, e4, r4)$.

The operational reading of this program should be evident. For example, if we reach $\text{goto loop}(b2, e3, r3)$ we pass the current values of $b2$, $e3$ and $r3$ and move them
into variables b_1, e_1, and r_1. That fact that labeled jumps correspond to moving values from arguments to label parameters will be the essence of how to generate assembly code from the SSA intermediate form in Section 7.

4 SSA and Functional Programs

We can notice that at this point the program above can be easily interpreted as a functional program if we read assignments as bindings and labeled jumps as function calls. We show the functional program below on the right in ML-like form.

```
pow(b0,e0): fun pow (b0, e0) =
r0 <- 1 let val r0 = 1
goto loop(b0,e0,r0) in loop (b0, e0, r0) end

loop(b1,e1,r1): and loop (b1, e1, r1) =
if (e1 > 0) if e1 > 0
  then body(b1,e1,r1) then body (b1, e1, r1)
  else done(b1,e1,r1) else done (b1, e1, r1)

body(b2,e2,r2): and body (b2, e2, r2) =
r3 <- r2 * b2 let val r3 = r2 * b2
e3 <- e2 - 1 val e3 = e2 - 1
goto loop(b2,e3,r3) in loop (b2, e3, r3) end

done(b3,e4,r4): and done (b3, e4, r4) =
return r4 r4
```

There are several reasons this works in general. First, in SSA form each variable is defined only once, which means it can be modeled by a let binding in a functional language. Second, each goto is at the end of a block, which translates into a tail call in the functional language. Third, because all jumps become tail calls, a return instruction can be modeled simply be returning the corresponding value.

We conclude that translation into SSA form is just translating abstract machine code to a functional program! Because our language does not have first-class functions, the target of this translation also does not have higher-order functions. Interestingly, this observation also works in reverse: a (first-order) functional program with tail calls can be translated into abstract machine code where tail calls become jumps.

While this is clearly an interesting observation, it does not directly help our compiler construction effort (although it might if we were interested in compiling a functional language).
5 Optimization and Minimal SSA Form

At this point we have constructed clean and simple abstract machine code with parameterized labels. But are all the parameters really necessary? Let’s reconsider:

\[
\text{pow(b0,e0):} \\
\quad r0 <- 1 \\
\quad \text{goto loop(b0,e0,r0)} \\
\]

\[
\text{loop(b1,e1,r1):} \\
\quad \text{if (e1 > 0)} \\
\quad \quad \text{then body(b1,e1,r1)} \\
\quad \quad \text{else done(b1,e1,r1)} \\
\]

\[
\text{body(b2,e2,r2):} \\
\quad r3 <- r2 * b2 \\
\quad e3 <- e2 - 1 \\
\quad \text{goto loop(b2,e3,r3)} \\
\]

\[
\text{done(b3,e4,r4):} \\
\quad \text{return r4} \\
\]

There is no need to pass \(b_1, e_1, \) and \(r_1 \) to body and assign their values to \(b_2, e_2, \) and \(r_2 \) (respectively). Instead, we could remove these arguments and instead substitute \(b_1 \) for \(b_2, e_1 \) for \(e_2, \) and \(r_1 \) for \(r_2. \) The same goes for the arguments to done, though we could also conclude that \(b_3 \) and \(e_4 \) are unnecessary because those temps are never even live. This yields:

\[
\text{pow(b0,e0):} \\
\quad r0 <- 1 \\
\quad \text{goto loop(b0,e0,r0)} \\
\]

\[
\text{loop(b1,e1,r1):} \\
\quad \text{if (e1 > 0)} \\
\quad \quad \text{then body()} \\
\quad \quad \text{else done()} \\
\]

\[
\text{body():} \\
\quad r3 <- r1 * b1 \\
\quad e3 <- e1 - 1 \\
\quad \text{goto loop(b1,e3,r3)} \\
\]

\[
\text{done():} \\
\quad \text{return r1} \\
\]
We see this is still in SSA form. Next we can ask if all the arguments to loop are really necessary. We have two gotos and one definition:

goto loop(b0,e0,r0)
goto loop(b1,e3,r3)

loop(b1,e1,r1):

Let’s consider the first argument. In the first call it is b_0 and in the second b_1. Since we have SSA form, we know that the b_1 will always hold the same value. In fact, the only call with a different value is with b_0, so b_1 will in fact always have the value b_0. This means the first argument to loop is not needed and we can erase it, substituting b_0 for b_1 everywhere in the program. This yields:

```
pow(b0,e0):
  r0 <- 1
  goto loop(e0,r0)

loop(e1,r1):
  if (e1 > 0)
    then body()
    else done()

body():
  r3 <- r1 * b0
  e3 <- e1 - 1
  goto loop(e3,r3)

done():
  return r1
```

It is easy to check this is still in SSA form. The remaining arguments to loop are all different, however (e_0 and e_3 for e_1 and r_0 and r_2 for r_1), so we cannot optimize further.

This code is now in *minimal SSA form* in the sense that we cannot remove any label arguments by purely syntactic considerations.

The general case for this optimization is as follows: assume we have a parameterized label $l(\ldots, x_i, \ldots)$: where all gotos targeting l have the form

- goto $l(\ldots, x_i, \ldots)$ (for the same generation i) or
- goto $l(\ldots, x_k, \ldots)$ (all at the same generation k).

Then the x_i argument to l is redundant, and x_i can be replaced by x_k everywhere in the program.
Let’s take a look at the pre-minimization version of our program again. Every use of a parameterized label has been labeled with an uppercase letter:

\[
\begin{align*}
pow(b_0, e_0): & \quad // A \\
r_0 & \leftarrow 1 \\
goto \ loop(b_0, e_0, r_0) & \quad // B \\
\\
\text{loop}(b_1, e_1, r_1): & \quad // C \\
\text{if} (e_1 > 0) & \\
\quad \text{then body}(b_1, e_1, r_1) & \quad // D \\
\quad \text{else done}(b_1, e_1, r_1) & \quad // E \\
\\
\text{body}(b_2, e_2, r_2): & \quad // F \\
r_3 & \leftarrow r_2 \ast b_2 \\
e_3 & \leftarrow e_2 - 1 \\
goto \ loop(b_2, e_3, r_3) & \quad // G \\
\\
\text{done}(b_3, e_4, r_4): & \\
& \quad \text{return } r_4
\end{align*}
\]

The information we need to minimize this SSA program is, unfortunately, rather scattered about. In order to check whether we can remove the \(b_1\) argument to loop, we have to check lines \(B\), \(C\), and \(F\). But this is just a problem of how information is organized in the program: first, we have to look at a line (example: \(E\)), then we can see which label we’re jumping to (example: goto), then we can look and see which source temps (example: \(b_1, e_1, r_1\)) will get substituted for which destination temps (example: \(b_3, e_4, r_4\)).

Put differently, the SSA part of the program is representable as a bunch of facts of the form \(\text{jump}(\text{line}, \text{label}, \text{src}, \text{dst})\), and in the example program above these facts are arranged in the following order:

\[
\begin{align*}
\text{jump}(B, \text{loop}, b_0, b_1) & \quad \text{jump}(E, \text{done}, b_1, b_3) \\
\text{jump}(B, \text{loop}, e_0, e_1) & \quad \text{jump}(E, \text{done}, e_1, e_4) \\
\text{jump}(B, \text{loop}, r_0, r_1) & \quad \text{jump}(E, \text{done}, r_1, r_4) \\
\text{jump}(D, \text{body}, b_1, b_2) & \quad \text{jump}(G, \text{loop}, b_2, b_1) \\
\text{jump}(D, \text{body}, e_1, e_2) & \quad \text{jump}(G, \text{loop}, e_3, e_1) \\
\text{jump}(D, \text{body}, r_1, r_2) & \quad \text{jump}(G, \text{loop}, r_3, r_1)
\end{align*}
\]

But to perform SSA minimization, we want to arrange all these facts in a different way. Specifically, we want to gather all the facts with the same parameterized label and the same destination together, because if there is only one \(\text{src}\) that is associated with a given \(\text{dst}\), or if there are two sources but one of them is equal to \(\text{dst}\), then the parameter is unnecessary.
Rearranged for minimization, our program facts look like this, and it is immediately apparent that we can get rid of all the labels to `body` and `done`.

\[
\begin{align*}
\text{jump(B, loop, b0, b1)} & \quad \text{jump(D, body, b1, b2)} \quad \text{-- unneeded, b1=b2} \\
\text{jump(G, loop, b2, b1)} & \quad \text{jump(D, body, e1, e2)} \quad \text{-- unneeded, e1=e2} \\
\text{jump(B, loop, e0, e1)} & \quad \text{jump(D, body, r1, r2)} \quad \text{-- unneeded, r1=r2} \\
\text{jump(G, loop, e3, e1)} & \quad \text{jump(E, done, b1, b3)} \quad \text{-- unneeded, b1=b3} \\
\text{jump(B, loop, r0, r1)} & \quad \text{jump(E, done, e1, e4)} \quad \text{-- unneeded, e1=e4} \\
\text{jump(G, loop, r3, r1)} & \quad \text{jump(E, done, r1, r4)} \quad \text{-- unneeded, r1=r4} \\
\end{align*}
\]

(Observe that it is not immediately apparent that we can get rid of `b1`, because there are two sources `b0` and `b2` and neither one is equal to `b1`. We only learn that we can get rid of the parameter `b1` after we perform the substitution of `b1` for `b2`.)

What would the program look like if we presented it in a way that made minimization easier? We would need, associated with every parameter and every parameterized label, a list of the the lines that might jump to the parameterized label and the temp that should get substituted for the parameter when we jump from that line. The loop block would look like this:

```
loop:
  b1 <- b0 if coming here from line B, 
       b2 if coming here from line G 
  e1 <- e0 if coming here from line B, 
       e3 if coming here from line G 
  r1 <- e0 if coming here from line B, 
       e3 if coming here from line G 
```

This organization is actually the traditional way of presenting SSA form, except that SSA is usually presented in a more compact form called ϕ-functions. The idea is the same, but we don’t mention call sites explicitly, instead we say $b1 \leftarrow \phi(b0, b2)$ to represent that $b1$ should, at the beginning of the loop block, be assigned to either $b0$ or $b2$ (whichever one we most recently wrote to). Applied to our pre-minimization example program, we get this:

```
pow(b0,e0):
  r0 <- 1
  goto loop

loop:
  b1 <- phi(b0,b2)
  e1 <- phi(e0,e3)
  r1 <- phi(e0,e3)
  if (e1 > 0) then body else done
```
body:
 b2 <- phi(b1)
 e2 <- phi(e1)
 r2 <- phi(r1)
 r3 <- r2 * b2
 e3 <- e2 - 1
 goto loop

done:
 b3 <- phi(b1)
 e4 <- phi(e1)
 r4 <- phi(e1)
 return r4

With this form, we can state the algorithm for SSA minimization described by Aycock and Horspool [AH00] the way they described it. It’s quite simple: repeatedly delete ϕ-functions of the form

$$t_i = \phi(t_{x_1}, t_{x_2}, \ldots t_{x_k})$$

whenever all the x_i are either i or j. After minimization, our ϕ-function SSA looks like this:

pow(b0,e0):
 r0 <- 1
 goto loop

loop:
 e1 <- phi(e0,e3)
 r1 <- phi(r0,r3)
 if (e1 > 0) then body else done

body:
 r3 <- r1 * b0
 e3 <- e1 - 1
 goto loop

done:
 return r1

The only remaining ϕ-functions correspond to the two parameters remaining in our functional SSA program $\text{loop}(e_1, r_1)$.
In conclusion, ϕ-function SSA is important for a number of reasons:

- It organizes information about parameters in a way that makes SSA minimization easier.

- It can be easier to understand some of the SSA-based optimizations that we’ll talk about later in terms of ϕ-function SSA.

- It is the standard way of presenting SSA. If you want to read the textbook or any paper presenting SSA, you’ll need to understand this form. This includes the Aycock and Horspool paper [AH00], which discusses useful implementation details and optimizations of the algorithm described here.

7 Assembly Code Generation from SSA Form

Of course, actual assembly code does not allow parameterized labels. To recover lower level code, we need to implement labeled jumps by moves followed by plain jumps. We show this again on the first example, with functional SSA and the left and the de-SSA form on the right.

```plaintext
pow(b0,e0):
  r0 <- 1
  goto loop(e0,r0)

loop(e1,r1):
  if (e1 > 0)
    then body()
    else done()

body():
  r3 <- r1 * b0
  e3 <- e1 - 1
  goto loop(e3,r3)

done():
  return r1
```

In some cases of conditional jumps, there may be no natural place for the additional move instructions. This can be addressed by switching to an extended basic
Static Single Assignment Form

block format, or by adding a new basic block that performs the moves required by SSA. Either way, we retain here the parameters at the function boundary; we will talk about the implementation of function calls in a later lecture.

The new form on the right is, of course, no longer in SSA form. Therefore one cannot apply any SSA-based optimization. Conversion out of SSA should therefore be one of the last steps before code emission. At this point register allocation, possibly with register coalescing, can do a good job of eliminating redundant moves.

8 Conclusion

Static Single Assignment (SSA) form is a quasi-functional form of abstract machine code, where variable assignments are variable bindings, and jumps are tail calls. It was devised by Cytron et al. [CFR+89] and simplifies many program analyses and optimization. Of course, you have to make sure that program transformations maintain the property. The particular algorithm for conversion into SSA form we describe here is due Aycock and Horspool [AH00]. A final note about Aycock and Horspool’s algorithm: it works for arbitrary SSA programs, but it only produces the minimal SSA for some programs. (Programs for which Aycock and Horspool’s algorithm works are called reducible. All C0 programs are reducible, so the algorithm will always find the minimal SSA if you use it in your compiler.)

Hack has shown that programs in SSA form generate chordal interference graphs which means register allocation by graph coloring is particularly efficient [Hac07].

For further reading and some different algorithms related to SSA, you can also consult the Chapter 19 of the textbook [App98].

Questions

1. Can you think of an example of minimal SSA that nevertheless has redundant label arguments?

2. Can you think of situations where the control flow graph for a conditional does not have a subsequent basic block with two incoming control flow edges?

3. Give an example of a program with a non-reducible control flow graph where Aycock and Horspool’s algorithm still finds the minimal SSA form.

4. Give an example of a program with a non-reducible control flow graph where Aycock and Horspool’s algorithm fails to find the minimal SSA form. What is the minimal SSA form for that graph?
References

