Recitation 11:
Stacks

15-312: Principles of Programming Languages

Wednesday, April 2, 2014

For this recitation, we will use the construction described in lecture and in Chapter 28 of PFPL for control stacks. As a refresher, here is the relevant portion of our syntax for stacks in the language:

\[
\text{Sort} \quad s ::= k \triangleright e \\
\text{State} \quad s ::= k \triangleleft e \\
\text{Stack} \quad k ::= e \\
\text{Frame} \quad f ::= \square (e_2) \\
\]

The direction of the triangle is used to indicate whether the expression in a state might need further evaluation. For \(k \triangleright e \), we interpret this as some stack \(k \) waiting for the evaluation of \(e \) before preceding. For \(k \triangleleft e \), we interpret this as some stack \(k \) ready to use \(e \) where \(e \ \text{val} \). The \(k \downarrow \) case is used to reflect exceptions which are passed on to the stack.

If we want to step some expression \(e \) in this language, we start with the state \(\epsilon \triangleright e \). When the computation is complete, our state should be of the form \(\epsilon \triangleleft e' \) where \(e \mapsto^* e' \) and \(e \ \text{val} \) in the case of success and \(\epsilon \downarrow \) in the case of failure.

Recall from class the rules for stepping states which relate to function application:

\[
\begin{align*}
(\triangleright) & : k \triangleright (x; e_2) & k; \square e_2 & \triangleright e_1 \\
(\triangleleft) & : k; \square e_2 \triangleleft e_1 & k; e_1 (\square) & \triangleright e_2 \\
(\downarrow) & : k; (\lambda(x) e) (\square) \triangleleft e_2 & k \triangleright [e_2/x]e
\end{align*}
\]

Task 1 What do we need to add to our syntax for frame to support evaluation of \(z, \lambda(x) e \), and \(\text{fix}[\tau](x.e) \)?

Task 2 What about \(s(e), \text{ifz}(e_0; e_1; x.e_2), \text{raise} \), and \(\text{try } e \text{ otherwise } e' \)?

Task 3 Now give the relevant rules for stepping states from which use expressions from Task 1.
Task 4 Do the same with Task 2.

Task 5 Show the steps involved in evaluating \((\lambda(x) x) \(z\))\) using traditional dynamics and again using stacks.