15-122: Principles of Imperative Computation

Rob Simmons and Hyrum Wright

http://www.cs.cmu.edu/~rjsimmon/15122-s15
http://c0.typesafety.net/
Overview

• Goals of this course
• Interactions
 – Lectures, recitations, office hours
• Assessment
 – Quizzes, homework, exams
• A mysterious function!
Goals

Computational Thinking

Programming

Algorithms
Programming Skills

• Transforming algorithmic ideas to code
• Writing tests
• Imperative programming in C and C0
• Basic Unix survival
Algorithmic Ideas

• Asymptotic complexity
 – time/space/amortized
 – worst case/average case
 – important classes: $O(1)$, $O(\log n)$, $O(n \log n)$, $O(n^k)$, $O(2^n)$

• Big ideas like order and randomness

• Lots of fundamental data structures
 – (Psst... this is often what tech interviews test on!)
Computational Thinking

• “Thinking like a computer scientist” is important for lots of people, not just computer scientists!

• A computer science approach to thinking about the correctness of programs
The Big Picture

• Pre- or co-requisites
 – either 15-151 (Math Foundations for CS)
 – or 21-127 (Concepts of Mathematics)

• Counterpart
 – 15-150 (Principles of Functional Programming)

• Pre-requisite for
 – 15-213 (Introduction to Computer Systems)
 – 15-210 (Parallel and Sequential Data Structures and Algorithms)
 – 15-214 (Principles of Software System Construction)
Overview

• Goals of this course
• Interactions
 – Lectures, recitations, office hours
• Assessment
 – Quizzes, homework, exams
• A mysterious function!
Lectures

• Tuesday and Thursday
• Please be here, please be active
 – Ask and answer questions, pay attention
 – Lecture notes published after lecture
• Laptops for note-taking only
 – No surfing, email, games...
 – If you want to work on your homework, do so elsewhere
 – If you can see board from the back row, be there
 – Too distracting for other students
Labs and Recitations

• (Hello, TAs!)
• Labs Monday, recitations Friday
• Reinforce lecture material
• Problem solving (and working in groups!)
• How-to programming and tool support
• *Attend the lab/recitation you’re registered for*
Laptop Setup Office Hours

• Sunday, 4:30-6:30pm, GHC 4401 (Rashid)
• Get set up using the C0 tools with Andrew Linux
• Format: drop-in for half an hour
• Or do it yourself:
 http://c0.typesafety.net/tutorial/C0-at-CMU.html
Online communication

• Autolab for homework and grades
• Piazza for announcements, questions, and communication with course staff. Get help, help each other!
• Cluster Linux machines and SSH to shared machines for assignments
Other Resources

• Course home page
 – http://www.cs.cmu.edu/~rjsimmon/15122-s15
 – Schedule, lecture notes, calendar, contact info...
 – Office hours start soon, check Piazza

• C0 home page
 – http://c0.typesafety.net/
 – Tutorial, reference, examples, binaries
Overview

• Goals of this course
• Interactions
 – Lectures, recitations, office hours
• Assessment
 – Quizzes, homework, exams
• A mysterious function!
Assessment

• 50% - Exams (2 midterms and a final)
• 40% - Weekly Homework
 – Programming usually due Thursday 10pm through Autolab
 • 4 late days total, max 1 day per assignment
 • Download assignments and code from Autolab
 • Style grading
 – Written usually due Monday by 5:30pm in person
 • No late days, turn in Tuesday in lecture for a significant penalty
 • Don’t hand in work for other people
• 10% - Quizzes and Lab participation
 – Labs Monday, Quizzes Fridays
 – Basically: make an good effort to get full credit

http://www.cs.cmu.edu/~rjsimmon/15122-s15/schedule.html
Academic integrity

• Quizzes, exams, homework must be your own
• You must hand in your work
• OK: discussion of course material, practice problems, study sessions, going over handed-back homework in groups
• Not OK: copying or discussing answers, looking at or copying code (even parts)
• Not OK: talking through the assignment as you code with a classmate

• We use MOSS to catch code duplication
• If you make a mistake, come to us, don’t let us come to you
Overview

• Goals of this course
• Interactions
 – Lectures, recitations, office hours
• Assessment
 – Quizzes, homework, exams
• A mysterious function!
A Mysterious Function Approaches!