modpow_one

Let’s consider the function modpow_one(a, b, c) which computes \(a^b \mod c\). This function has many practical applications, including being a key part of the RSA cryptography algorithm.

```c
1 int modpow_one(int a, int b, int c)
2 { //@requires a >= 0 && b >= 0 && c > 0;
3     //@requires c - 1 <= int_max()/max(a, c - 1);
4     //@ensures 0 <= \result && \result < c;
5     { 6         int res = 1 % c;
7             while (b > 0)
8                 { //@loop_invariant 0 <= res && res < c;
9                     res *= a;
10                     res = res % c;
11                     b--; }
12             return res;
13         }
14 }
```

Prove that this function satisfies its postcondition.

Solution:

Precondition and initial lines of code imply loop invariant. By the precondition on line 2, we know that \(c > 0\). In addition, we set \(res\) equal to \(1 \mod c\) (which must be at least 0 and less than \(c\) since \(0 < c\) and \(0 <= 1\)) on line 6. So, since \(0 <= (1 \mod c) && (1 \mod c) < c\), we know the loop invariant holds initially.

Preservation of the loop invariant. Assume that at the start of some iteration of the loop,
\[0 <= res && res < c\).

We know \(res' = (a \times res) \mod c\) (this doesn’t overflow since \(res <= c - 1\) and \(c - 1 <= int_max() / a\), and doesn’t cause division errors since \(c > 0\)).

Since \(res \times a\) doesn’t overflow and both \(res\) and \(a\) are non-negative, \(res \times a\) is non-negative. Further, \(c\) is positive, so by the definition of the modulo operator \(0 <= (res \times a) \mod c < c\). Hence, \(0 <= res' < c\) and so the loop invariant is preserved.

Loop invariant and negated loop guard imply postcondition In this case, we don’t need the negated loop guard. By the loop invariant, \(0 <= res && res < c\).

We return \(res\), so \(0 <= \result && \result < c\).

Termination When we start, \(b >= 0\). Each iteration of the loop, we decrement \(b\), so \(b\) will eventually be 0 and we’ll break out of the loop.
modpow_two

Now we’ll look at a different implementation, modpow_two.

```c
1 int modpow_two(int a, int b, int c)
2 //@requires a >= 0 && b >= 0 && c > 0;
3 //@requires (c - 1) <= int_max()/max(a, c - 1);
4 //@ensures \result == modpow_one(a, b, c);
5 {
6     int res = 1 % c;
7     int pow = 0;
8     while (pow < b)
9         //-------------------------------------------------------------------------
10         //-------------------------------------------------------------------------
11         // 12         // 13         // 14         if (0 < pow && pow <= b/2) {
15             res *= res;
16             res = res % c;
17             pow *= 2;
18         }
19         else {
20             res *= a;
21             res = res % c;
22             pow++;
23         }
24     }
25     return res;
26 }
```

Is this function asymptotically faster than, slower than, or the same speed as modpow_one? Explain.

Solution: This is asymptotically the same speed as modpow_one. This is because once `pow > b/2` we must run at worst `b/2` steps. \(\frac{b}{2} \leq \frac{1}{2} \times b \) for all `b`, so modpow_one is \(O(b) \), just as modpow_one is.

(In practice, modpow_two is faster than modpow_one, since the part of the loop where `pow <= b/2` is much much faster than the first half of the modpow_one loop, but asymptotically they are the same speed.)

Write loop invariants for modpow_two.

Solution: From looking at the body of the loop, we can see that `pow` keeps track of the current power we’ve raised `a` to.

At the end of the function, we want to return `modpow_one(a, b, c)`. We return `res`, so it’d be helpful if our loop invariant told us something about that. Since `pow` is the current power, a relevant loop invariant is `//@loop_invariant res == modpow_one(a, pow, c);`.

But just that alone isn’t strong enough. We also need some way of making sure that `pow == b` at the end—otherwise, we won’t be able to prove our postcondition.

So, we can have a loop invariant `//@loop_invariant 0 <= pow && pow <= b;`

So, our loop invariants are:
Now, prove that if the preconditions to modpow_two are satisfied, it satisfies its postcondition.

If it helps, you can assume that $0^0 = 0$, even though it’s actually indeterminate. You can also assume that modpow_one obeys the properties that

\[(modpow_one(a, b, c) \times a) \mod c = modpow_one(a, b + 1, c)\] and
\[(modpow_one(a, b, c) \times modpow_one(a, b, c)) \mod c = modpow_one(a, 2 \times b, c)\]

Solution:

** Preconditions and initial lines of code imply loop invariant** We set pow to 0 on line 7 and we know $b \geq 0$ by the precondition, so $0 \leq pow \&\& pow \leq b$.

We’ve set res to $1 \mod c$ (on line 6), and pow is 0. modpow_one(a, 0, c) is equivalent to $1 \mod c$, since $a^0 = 1$ for any a. So, res \equiv modpow_one(a, pow, c).

Thus, the loop invariants hold before the first iteration of the loop.

Preservation of loop invariants Assume $0 \leq pow \&\& pow \leq b$ and res \equiv modpow_one(a, pow, c).

We split into cases.

If $0 < pow$ and $pow \leq b/2$, then: res’ \equiv (res * res) $\mod c$ and pow’ \equiv pow $\times 2$.

By the loop invariant, this means that res’ \equiv (modpow_one(a, pow, c) * modpow_one(a, pow, c)) $\mod c$.

But, by our assumption above, this is equal to modpow_one(a, 2 * pow, c).

Since pow’ \equiv 2 * pow, this means that res’ \equiv modpow_one(a, pow’, c). Thus, the second loop invariant holds.

The first invariant holds since pow $\leq b/2$ and pow’ $\geq 2 \times pow$. That means that pow’ $\leq b$ (division rounds down, so this can’t possibly be greater than b). We know $0 \leq pow$ since we increased pow and there was no overflow.

In the second case, res’ \equiv (res * a) $\mod c$ and pow’ \equiv pow + 1.

The first loop invariant is preserved since pow $< b$ (by the loop guard), so pow’ $\leq b$. We know pow’ $\geq pow$ and pow ≥ 0 by the loop invariant, so pow’ ≥ 0. So, the first invariant is preserved in this case.

res’ \equiv (modpow_one(a, pow, c) * a) $\mod c$, which by our assumption is equal to modpow_one(a, pow + 1, c).

Since pow’ \equiv pow + 1, this means res \equiv modpow_one(a, pow’, c). Thus, the second loop invariant is preserved in this case.

Thus, both loop invariants are preserved.
Loop invariants and negated loop guard imply postcondition The negated loop guard is \(pow \geq b \). The first loop invariant tells us that \(pow \leq b \). Thus, \(pow = b \).

By the second loop invariant, \(res = modpow_one(a, pow, c) \). But since \(pow = b \), this means that \(res = modpow_one(a, b, c) \).

We return res, so our postcondition is satisfied.

Termination pow starts out at 0 and is strictly increasing, so it will eventually be as large as b. At that point, the loop terminates. (pow won’t overflow since b is a positive int)

Thus, pow_fast returns the same result as pow_slow.