Iterative vs. recursive factorial

Consider the following implementations of the factorial function, and try to prove that it satisfies its postcondition.

```c
int factIter(int n)
{
    // You can assume that this function is correctly implemented.
    // That is, you can assume factIter(n) is equal to n!
}
```

```c
int factRec(int n)
{//@requires n >= 0;
//@ensures \result == factIter(n);
{
    if (n == 0) {
        return 1;
    }
    else {
        return n * factRec(n - 1);
    }
}
```

Solution:

Partial correctness.

Base case First, we consider the base case. When \(n = 0 \), we know that we return 1, which is 0!, so it's equal to \(\text{factIter}(0) \).

Inductive hypothesis Next, we assume that \(\text{factRec}(k) \) satisfies the postcondition for some \(\text{int } k \) where \(k >= 0 \), or in other words that the result of \(\text{factRec}(k) \) is equal to \(\text{factIter}(k) \).

Inductive step Now, we consider \(\text{factRec}(k + 1) \). Since \(k >= 0 \), we know \(k + 1 > 0 \).

Therefore, we'll be in the else case and will return \((k + 1) * \text{factRec}(k + 1 - 1) \), which is equal to \((k + 1) * \text{factRec}(k) \). We're allowed to make this call since we know that \(k + 1 > 0 \) and so \(k >= 0 \).

By the inductive hypothesis, \(\text{factRec}(k) \) is equivalent to \(\text{factIter}(k) \) and by the definition of factorial (and the assumption that \(\text{factIter} \) is correct) \((k + 1) * \text{factIter}(k) \) is equal to \(\text{factIter}(k + 1) \).

Thus, the function has partial correctness.

Termination:

We've shown that if the function terminates, it is correct, but we need to show that the function terminates.
By the precondition, we know that \(n \geq 0 \).

Base case We also know that if \(n = 0 \) then we terminate immediately.

Inductive hypothesis Assume that \(\text{factRec}(k) \) terminates for some \(k \geq 0 \), where \(k \) is an int.

Inductive step Then, consider \(\text{factRec}(k + 1) \). We recurse and call \(\text{factRec}(k) \). By our inductive hypothesis, \(\text{factRec}(k) \) terminates, so therefore \(\text{factRec}(k + 1) \) terminates as well.

Thus, for all \(n \geq 0 \), this function terminates.