Big-O definition

The definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at first. Let’s familiarize ourselves with the formal definition and get an intuition behind what it’s saying.

$O(g(n))$ is a set of functions, where $f(n) \in O(g(n))$ if and only if:

there is some ___

and some ___

such that for all __,

__.

Big-O intuition

There are actually infinitely many functions that are in $O(g(n))$: If $f(n) \in O(g(n))$, then $\frac{1}{2}f(n) \in O(g(n))$ and $\frac{1}{3}f(n) \in O(g(n))$ and $2f(n) \in O(g(n))$. In general, for any constant k, $kf(n) \in O(g(n))$.

Checkpoint 0

Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of it. (For instance, $O(n)$ goes farther to the left than $O(n!)$ because $O(n) \subset O(n!)$. If two sets are the same, put them on top of each other.

$O(n!) \ O(n) \ O(4) \ O(n \log(n)) \ O(4n + 3) \ O(n^2 + 20000n + 3) \ O(1) \ O(n^2) \ O(2^n) \ O(\log(n)) \ O(\log^2(n)) \ O(\log(\log(n)))$

Checkpoint 1

Using the formal definition of big-O, prove that $n^3 + 300n^2 \in O(n^3)$.

Checkpoint 2

Using the formal definition of big-O, prove that if $f(n) \in O(g(n))$, then $k \cdot f(n) \in O(g(n))$ for $k > 0$.
One interesting consequence of the result in Checkpoint 2 is that $O(\log_i(n)) = O(\log_j(n))$ for all i and j (as long as they’re both greater than 1), because of the change of base formula:

$$\log_i(n) = \frac{\log_j(n)}{\log_j(i)}$$

But $\frac{1}{\log_j(i)}$ is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.

When we ask for the **simplest, tightest bound** in big-O, we’ll usually take points of if you write, for instance, $O(\log_2 n)$ instead of the simpler $O(\log n)$.

Simplest, tightest bounds

Something that will come up often with big-O is the idea of a tight bound on the runtime of a function.

It’s technically correct to say that binary search, which takes around $\log(n)$ steps on an array of length n, is $O(n!)$, since $n! > \log(n)$ for all $n > 0$ but it’s not very useful. If we ask for a tight bound, we want the closest bound you can give. For binary search, $O(\log(n))$ is a tight bound because no function that grows more slowly than $\log(n)$ provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 3

Simplify the following big-O bounds without changing the sets the represent:

- $O(3n + 2)$ can be written more simply as ________________________________
- $O(n^{2.5} + \log_2(n))$ can be written more simply as ________________________________
- $O(\log_{10}(n) + \log_2(7n))$ can be written more simply as ________________________________

Checkpoint 4

Give the simplest, tightest bound for the following functions:

- $f(n) = 16n^2 + 5n + 2 \in$ ________________________________
- $g(n, m) = n^{1.5} \times 16m \in$ ________________________________
- $h(x, y, z) = \max(x, y) + z^{16} \in$ ________________________________

Checkpoint 5

A water main break in GHC has unexpectedly removed for loops and all contracts except for //@assert from the C0 compiler! Rewrite this function using so that all the same operations (contract checks, loop guard checks, assignments...) still happen in the same order as when this code is compiled with -d.

```haskell
1  int search(int x, int[] A, int n)
2  //@requires n == \length(A);
3  //@ensures -1 <= \result && \result < n;
4  {
5     for (int i = 0; i < n; i++)
6         //@loop_invariant \theta <= i;
7         {
8             if (A[i] == x) return i;
9         }
10     return -1;
11 }
```