Loop Invariant

- Def’n: A boolean condition that is true immediately before every evaluation of the loop guard.
- It is true even if the loop runs 0 times (i.e. is skipped).
- It is true immediately before each evaluation of the loop guard, including the last evaluation if the loop terminates.
- It is true immediately after the loop terminates, if the loop terminates.
while (c) {
 //@loop_invariant I;
 {
 loop body
 }
 //@assert P;

1. **INIT**
Show that the loop invariant I is true immediately before the first evaluation of the loop guard C.
2. PRESERVATION
Show that if the loop invariant I is true immediately before the evaluation of the loop guard C, then I is true immediately before the next evaluation of the loop guard C.
3. TERMINATION
Show that the loop will always terminate (i.e. that C must eventually be false).
Once we have a valid loop invariant, we can show that the logical conjunction of the loop invariant \(I \) and the negation of the loop guard \(C \) implies the desired postcondition \(P \):

\[
I \land \sim C \implies P
\]
Reasoning with a Loop Invariant

Given a loop with a loop guard C and a postcondition P, we can use the loop invariant I to reason that the postcondition must follow.

• We use step 1 to reason that loop invariant I is true immediately before first evaluation of C.
Reasoning with a Loop Invariant

- We use step 2 to reason that loop invariant I must be true at the end of the first iteration (since we’ve reasoned it is true at the start of the first iteration).
Reasoning with a Loop Invariant

• Since I was true at the end of the first iteration, it is also true at the start of the second iteration.

• We use step 2 to reason that loop invariant I must be true at the end of the second iteration (since we’ve reasoned it is true at the start of the second iteration).
Reasoning with a Loop Invariant

• Since I was true at the end of the second iteration, it is also true at the start of the third iteration.

• We use step 2 to reason that loop invariant I must be true at the end of the third iteration (since we’ve reasoned it is true at the start of the third iteration).
Reasoning with a Loop Invariant

... we can reason each iteration the same way until...

• Since I was true at the end of the next-to-last iteration, it is also true at the start of the last iteration.

• We use step 2 to reason that loop invariant I must be true at the end of the last iteration (since we’ve reasoned it is true at the start of the last iteration).
Reasoning with a Loop Invariant

• We use step 3 to reason that we exit the loop after the last iteration.

• After the last iteration, C is now false, but I must be true (since I was true at the end of the last iteration).

• Once we know we have a proper loop invariants, we can use it to show that the conjunction of I ^ ~C implies P to argue that the desired postcondition holds.
Reasoning with a Loop Invariant

• Note that this reasoning works even if the loop executes 0 times. (step 2 is vacuous)
• Note that step 2 is used to reason about EVERY single iteration using the same logic. Step 2 acts as a generalization so we can reason about every execution of this loop, no matter how many times it will run.