Speech Generation & Recognition

Reid Simmons
Illah Nourbakhsh

Speech Generation
Desirable Speech Characteristics

• Naturalness
 – Sounds human-like

• Intelligibility
 – Easily understandable

Speech Synthesis (Text-to-Speech)

• Why is this difficult, technically?
Speech Synthesis

• Normalization
 – Pre-process text to contain only words

• Text Analysis
 – Syntactic parsing
 – Semantic parsing

• Text-to-Phoneme
 – Pronunciation

• Prosody
 – Pitch, loudness, duration => stress

• Affect

Issues with Normalization

• Numbers

• Abbreviations

• Acronyms
Issues with Pronunciation

- Ambiguous words
 - Often depends on part-of-speech
 - May depend on semantics
 - May depend on tense!

- Many exceptions to “sounding out” rules
 - though, through, bough, cough, tough
 - comb, tomb, bomb
 - dose, hose, lose

Issues with Prosody

- Punctuation
 - Pause, after comma
 - Rising tone for questions?

- Syllabic stress

- Word stress
Issues with Affect

- Speed of speech
- Emotional content of speech

Exercise

- Get into your teams
- Create a four word sentence
 - noun-verb-noun-adverb or noun-verb-adjective-noun
 - Read and record using four different emotions (happy, angry, sad, disgusted, fearful, surprised)
 - listen and analyze how prosody changes
- Take notes: We will then discuss
Techniques for Speech Generation

- **Formant** (rule-based)
 - Use acoustic models
 - Compact program
 - Tends to be quite intelligible, but limited prosody

- **Concatenation** (unit selection)
 - Use human speech, “sliced and diced”
 - phones, diphones, triphones, …
 - Layer on prosody using signal processing
 - Domain-specific synthesis

SSML

- Semi-standard markup language for specifying pronunciation and prosody
 - `<emphasis level="strong">`
 - `<break time="4500ms">`
 - `<prosody rate="fast">`
 - `<prosody pitch="+25Hz">`
 - `<prosody volume="33%">`
 - `_{Dr.}`
 - `<phoneme ph='t ah0 m ey1 t ow0">tomato</phoneme>`
 - `<say-as interpret-as="digits">123</say-as>`
 - `<say-as interpret-as="number:ordinal">VIII</say-as>`
Speech Recognition

• Why is this difficult, technically?
Diverse Sources of Ambiguity

- Acoustic/Phonetic
 - Let us pray
 - Lettuce spray
- Syntactic
 - Meet her at the end of Main Street
 - Meter at the end of Main Street
- Semantic
 - Is the baby crying
 - Is the bay bee crying
- Discourse Context
 - It is hard to recognize speech
 - It is hard to wreck a nice beach

Phonemes

- ~40-45 phonemes in English
 - Variance depends mostly on dialect
- Voiced vs. unvoiced
 - vowels vs. consonants
- Phonetic sounds may differ based on preceding and succeeding phonemes
The Acoustic Signal

Sad:

Techniques for Speech Recognition

- Almost all current approaches use statistical modeling and massive amounts of data
- Maximize probability of word sequence
 - $P(W^* \mid A) \approx P(A \mid W^*)P(W^*)$
- Typically, language model uses trigrams
 - Probable sequence of phonemes
 - $P(W_n \mid W_{n-1}, W_{n-2})$
- Other constraints
 - Syntax
 - Semantics
 - Domain / context
Representing Language Model

- Hierarchical *Hidden Markov Model* (HMM)
 - Atomic units (sub-phoneme)
 ~20ms slices, characterized by power in bands of frequencies
 - HMM of phonemes
 - HMM of diphones or triphones
 - HMM of words
 - HMM of phrases (trigrams)
 - Put together into single HMM

- Use Viterbi algorithm to find best path
 - May use backwards search to refine path

Simple Word-Level HMM

“what”

“you”
Grammatical Issues

- Incomplete Sentences
- Non-Grammatical Sentences
- Fillers
 - er, um, ...
- Disfluencies
 - cutting off mid-word
 - corrections
 - hesitations

Further Issues

- Recognizing Prosody
 - Stress is important in interpreting pragmatics

- Recognizing Emotion/Affect

- Current Status
 - Siri and Google Voice have been able to use millions of training examples to create fairly good continuous, speaker-independent speech recognition