
Trajectons: Action Recognition Through the Motion Analysis of
Tracked Features

Pyry Matikainen1, Martial Hebert1, Rahul Sukthankar2,1

1 Robotics Institute, Carnegie Mellon University 2 Intel Labs Pittsburgh
pmatikai@cs.cmu.edu, hebert@ri.cmu.edu, rahuls@cs.cmu.edu

Abstract

The defining feature of video compared to still images
is motion, and as such the selection of good motion fea-
tures for action recognition is crucial, especially for bag of
words techniques that rely heavily on their features. Exist-
ing motion techniques either assume that a difficult problem
like background/foreground segmentation has already been
solved (contour/silhouette based techniques) or are compu-
tationally expensive and prone to noise (optical flow). We
present a technique for motion based on quantized trajec-
tory snippets of tracked features. These quantized snippets,
or trajectons, rely only on simple feature tracking and are
computationally efficient. We demonstrate that within a bag
of words framework trajectons can match state of the art re-
sults, slightly outperforming histogram of optical flow fea-
tures on the Hollywood Actions dataset. Additionally, we
present qualitative results in a video search task on a cus-
tom dataset of challenging YouTube videos.

1. Introduction

The recent rise in popularity of the bag-of-words
paradigm for action recognition in video has led to sig-
nificant gains in performance and the introduction of more
challenging datasets to tackle. Indeed, some of these tech-
niques can achieve near perfect performance where more
principled approaches only produce mediocre results. Nev-
ertheless, their success has highlighted the fact that signif-
icant work remains to be done in the area of features for
video, particularly with regards to motion.

Coming from work with static images, it is no surprise
that the familiar techniques of that area have come to be ap-
plied here, such as the ever-popular histograms of oriented
gradients. When dealing with the appearance of frames in
video, these types of features are entirely appropriate. But
actions in video comprise both an appearance aspect and a
motion aspect, and motion features have not had the benefit
inheriting a set of canonical techniques honed over decades.

−4−2
0 2

4

−4
−20

24
0

5

10

dxdy

t

−4−2
0 2

4

−4−20
24
0

5

10

dxdy

t

−4−2
0 2

4

−4−20
24
0

5

10

dxdy

t

−4 −2
0 2 4

−4
−2
0

2
4
0

5

10

dxdy

t

Figure 1. Simple KLT feature tracking is used to track as many
features as possible within a video. Each tracked point produces a
fixed length trajectory snippet every frame consisting of the last L
(usually ten) positions in its trajectory. These snippets are quan-
tized to a library of trajectons.

This leads us to believe that there are still significant gains
to be captured with motion features, and since it seems that
actions are defined more by their motion than by their inci-
dental appearance, this problem is doubly important.

Present bag-of-words techniques for motion are largely
extensions of appearance based techniques. Since motion
information cannot be read directly from the video as in the
case of appearance, it is necessary to either explicitly es-
timate this latent information or to implicitly encapsulate
it within an appearance measure. In the latter case, image
derivatives treating time as simply another dimension (pro-
ducing an image cube) implicitly encode some amount of
motion information; this approach amounts to augmenting
2D to 3D filters. However, as the framerate (that is, the
sampling frequency in the time dimension) is rather coarse
compared to the image resolution, any significant motion
will be poorly represented through 3D image gradients.

The former approach, explicit estimation of motion, has
proved to be more popular, most often in the form of optical
flow. However, optical flow is itself a difficult problem to

tackle, and even the best algorithms are noisy and computa-
tionally expensive. While in principle it should be possible
to track a feature using optical flow by simply integrating
a trajectory over the time varying flow field, in practice the
significant noise will quickly overwhelm any estimated tra-
jectory. In contrast, even simple KLT trackers [2] can, with
relative robustness, track a sparse set of features over rela-
tively large periods of time at only a fraction of the compu-
tational cost of optical flow.

Compared with a cube of optical flow vectors, the key
advantage of a trajectory is that it is attached to a partic-
ular moving feature. That is, in video deriving from the
movement of physical bodies through space, a properly
tracked feature (and hence trajectory) automatically gains
foreground-background separation. In contrast, histogram-
ming over a cube of optical flow vectors will blend the var-
ious sources of motion within that cube. For simple videos,
such as a single person against a static background, this con-
flation of foreground and background may not matter. For
more complicated videos with background motion and mul-
tiple occluding actors, this conflation comes at a cost.

To this end we introduce new trajectory-based motion
features, which we call trajectons. We demonstrate that
within a bag-of-words framework our simple and compu-
tationally efficient trajecton features are competitive with
state-of-the-art motion features on simple datasets and out-
perform them on complicated ones.

2. Related Work
The idea of textons, or quantized filter bank responses,

originated with texture classification but quickly grew to
be applied to object and scene recognition in static im-
ages [21, 6]. These approaches are backed by some degree
of psychological research suggesting that even human vi-
sion may employ unstructured statistical approaches at early
stages [15], and can scale well even to large datasets when
used with sparse features [5]. By analogy to the idea that
textual works are composed from a set of discrete repeating
elements (words), techniques that model data using a library
of quantized features are generally known as bags-of-words
approaches.

Recently bag of words techniques have gained signifi-
cant popularity in video interpretation [11]. In the case of
video appearance, the same features that work for static im-
ages still apply to video (e.g., histograms of oriented gra-
dients, filter responses). However, in the case of motion it
is not possible to directly read off the motion of the video
in the same way as appearance can be directly read from
pixels, and so the choice of motion features is complicated
significantly.

The philosophically closest measure to motion pixels is
dense optical flow, which has been a very common rep-
resentation of motion [11, 8, 10, 18]. Dense optical flow

has the benefit of intuitively representing our notion of mo-
tion in a directly analogous way to pixels and appearance,
but the actual calculation of optical flow from sequential
frames is itself a difficult problem and even the best algo-
rithms are plagued by severe artifacts and noise. In an at-
tempt to sidestep this problem, many techniques avoid the
actual calculation of optical flow, either by implicitly encod-
ing motion through temporal derivatives [16, 12, 7], or by
producing the information that would be required to com-
pute optical flow but refraining from the final step [18].

A more radical approach is to discard the notion of a
dense motion field computed over the entire video and only
compute motion at locations where it can be effectively esti-
mated. Since most applications are interested in classifying
the motion of actors distinct from their backgrounds, a nat-
ural desire is to only compute that motion which is relevant
to those actors. Due to the intuitive appeal of the idea that
the evolution of a silhouette through time is enough to cap-
ture the motion of an action, silhouette based features have
been common as well [23, 3, 10, 19]. However, silhouettes
cannot represent motion that occurs within the silhouette
boundary (like a person clapping with both hands in front
of her body), so the natural extensions has been from sil-
houettes to visual hulls [22, 20].

As silhouette extraction is not trivial either, the next step
is to discard both density and semantic meaning to simply
find special locations of interest (wherever they may be, on a
person or not) for which the motion can be effectively com-
puted. When these locations are pointlike, that is, occur-
ing at a single time, the result is space time interest points
around which various measures can be calculated, such as
optical flow [7, 23].

When these locations extend in time they become trajec-
tories, most frequently arising from tracked features. Often
it is assumed that these trajectories are from known, fixed
features, such as particular landmarks (e.g., elbows, hands)
on a human body [1, 14, 9]. If the trajectories are not on
known features, then if they are very long and robust, it
is potentially possible to extract full 3D information even
from a single view [13]. The duration and coherence of tra-
jectories means that each potentially contains a great deal
of information.

Our contribution is to bring trajectories into a bag of
words framework while avoiding the pitfalls of existing
trajectory-based motion features: the assumption that tra-
jectories are long, noise free, or tracking known body land-
marks; at the same time, we do not discard the fundamental
time-series nature of trajectories by treating them as merely
as unrelated series of derivatives to be binned. Our method
deals with short (< 20 frames) and inconsistent trajectories,
and we are able to use computationally-efficient stock fea-
ture tracking methods such as KLT even on complex video.
Since we are able to match the performance of optical flow

based methods even with our naive system, we believe there
are still significant gains to be made with the combination
of tracked feature point trajectories and bag of words tech-
niques.

3. Method

Our method proceeds according to the standard bag-of-
words approach: first, features are tracked over the video
using a KLT tracker [2] to produce feature trajectories (x
and y positions over time) for a number of features. These
trajectories are slightly transformed (cropped and filtered,
as described later) to produce a number of trajectory snip-
pets for each video. Given a training set of videos, first a
dictionary of trajectory words or trajectons is produced by
clustering a sample set of trajectory snippets into a specified
number (k) of clusters, the centers of which are retained as
the trajecton library. Next, for each video, either training
or test, its trajectory snippets are assigned the label of the
nearest center in the trajecton library, and these labels are
accumulated over the video to produce a histogram with k
bins. This k length vector is normalized to sum to one for
each video, and the training set of histograms along with
training class labels is used to train a support vector ma-
chine (SVM) to classify videos into action categories. This
SVM is used to classify the test set. The experiments shown
below employ the standard LIBSVM [4] implementation of
support vector machines.

We propose two variants of trajectons, which differ in
their construction of trajectory snippets. For vanilla trajec-
tons, each trajectory snippet is simply a concatenated vector
of (dx, dy) derivatives for the trajectory, whereas in Affine-
Augmented (AA) trajectons, this vector of derivatives is
concatenated with a vector of local affine transforms to de-
scribe the motion around each trajectory point.

3.1. Vanilla trajectons

3.1.1 Feature Tracking

A standard KLT tracker is used to track features (using
“good features to track”) over a video. In our implemen-
tation, we track a fixed number of features (typically 100),
with features replaced as necessary when tracks are lost.
The output of this tracking is a trace of (x, y) pairs for each
feature. For convenience of notation, we can assume that
feature indices are never reused; then we can express a fea-
ture i’s position at time t as Xt

i = (xt
i, y

t
i).

3.1.2 Trajectory Snippet Production

Then, for each frame, each feature that exists during this
frame produces a trajectory snippet that consists of the dis-
crete derivatives of the feature point locations in time. In

−4−2
0 2

4

−20
2

5

10

−100
10 20

−20
−10
0

10

5
10

−80
−60

−40
−20

0

−15−10−50

510

−30
−20

−10
0

−15−10−50

5
10

−10
−5

0
5

−20
24

6

5

10

−20
0

20
40

5
10

−20
−10

0

024
68

5
10

0 10
2030−40

−20
0

510

0
20

40

−2024

5
10

0
10

20

0
10

20

5
10

−5
0

5

−8−6−4−20

5

10

−8−6
−4−2

0 2

−4−20
24

6

5

10

0
10

20
30

−4−20

5
10

−4−2
0 2

−2−1
01

5

10

−30
−20

−10
0

−8−6−4
−202

5
10

0 1020
30

0
10

20
30

5
10

Figure 2. Example trajectons in the trajecton library computed
from the KTH dataset. Many, such as the long and straight tra-
jectories and the curving arcs, correspond to stereotypical portions
of specific actions in the KTH dataset (running, waving arms).

other words, given a frame time t and feature i, and a max-
imum snippet length L, the trajectory snippet produced is:

T t
i = {Xt

i −Xt−1
i , Xt−1

i −Xt−2
i , . . . , Xt−L+1

i −Xt−L
i },

where if Xj
i does not exist for a given time any terms con-

taining it are set to zero.
Since Xi includes both x and y position, the full flat-

tened vector will be of length 2L. If the number of tracked
features is fixed at n, and a video has f frames, this means
that the total number of trajectory snippets (and hence even-
tually trajectons) will be nf . Also, note that if a feature is
tracked for longer than L frames, every window of size L in
that trajectory produces its own snippet.

3.1.3 Trajectory Snippet Clustering and Quantization

Next, these trajectory snippets are clustered into a library
and that library is used to quantize snippets to a set of labels.
Examples, selected at random, from the trajecton library
computed for the KTH dataset [17] are shown in Fig. 2.

Given a sample set of trajectory snippets (vectors of
length 2L), these snippets are clustered using k-means with
the standard Euclidean distance metric into k clusters and
the cluster centers stored in a library of k trajectons. These
trajectons represent archtypical trajectories within the video
set.

The trajectory snippets of each video (both training and
test) are quantized using the trajecton library by assigning
each trajectory snippet the index of the trajecton to which it
has the smallest Euclidean distance.

Note that no attempt is made to explicitly induce scale
invariance, either spatial or temporal. If a particular action

Figure 3. Example computed motion clusters for a video of a man
jogging. Point color and shape indicates cluster assignment. The
jogging person is oversegmented into four clusters, however as
each cluster’s points are largely correct this oversegmentation will
have no effect on the end result. Note that each frame’s motion
segmentation is independent.

occurs at different scales or speeds, then instances of that
action are initially represented by different sets of trajec-
tons, and it is at the classification stage that these instances
are grouped together under a single label. This idea is con-
sistent with typical bag of words approaches and allows the
representation to discriminate between similar types of mo-
tion when necessary (e.g., running vs. jogging).

3.1.4 Video Classification

Following the standard bag of words framework, these tra-
jecton labels are binned to produce a fixed-length histogram
that is the final feature vector for a video. Given the nf
trajectory snippets and associated trajecton label for each
video, the trajecton labels are accumulated over the entire
video into a histogram with one bin per label, for k total
bins. Each video’s histogram is normalized to sum to one.

Finally, videos are classified using support vector ma-
chines. A multi-class SVM is trained on the set of training
histograms to produce video action classifications.

3.2. Affine-Augmented Trajectons

Vanilla trajectons suffer from the deficit, relative to his-
tograms of optical flow, that each trajecton contains only
information about a single point while ignoring the motion
of neighboring points. Since we want to preserve the prop-
erty that a trajecton encodes information that is attached to
a particular body, we cannot simply histogram derivatives
of nearby trajectories since that would confuse the trajec-
tories of points co-located on the same body and foreign
trajectories. Instead, we propose to first cluster the mo-
tions within the video into sets of trajectories which can be
well described with mutually shared transforms; these mo-

tion clusters ideally fall within a single moving body. Each
trajecton can then calculate local movement around itself
according to the transforms for its motion cluster. Some
example motion clusters can be seen in Fig. 3 in which a
person moving his head and arm in independent ways has
them properly assigned into different clusters.

For k motion clusters, the goal is to produce a set of
assignments of trajectory snippets to clusters and cluster
transforms such that the error between how a trajectory is
expected to evolve (as calculated by successively transform-
ing the first found location of a given feature point accord-
ing to a cluster center) and its actual historical record. This
goal is achieved in a k-means like manner in which trajec-
tory snippets are first assigned to the centers that minimize
error, and then center transforms are refined according to
their assigned trajectory snippets. These two steps repeat
until either convergence is reached or a fixed number of it-
erations have elapsed (in our implementation we limit to 20
iterations).

3.2.1 Point to Center Assignment

In the center assignment step, each trajectory snippet is as-
signed to the center which minimizes the error between its
predicted trajectory according to those transforms and its
actual trajectory.

For a given trajectory Xi, let Xi
t =< xi

t, y
i
t > be the

location of the tracked point at time t, where t0 is the current
frame.

Let T j
a→b be the transform for center j from time ta to

time tb. In particular, let T j
a→0 be the cumulative transform

from a given time ta to the current frame t0.
Then the error for a trajectory Xi to a center T j is given

by

e(Xi, T j) =
∑0

t=si,j+1 ||T
j
si,j→tX

i
si,j −Xi

t ||
|si,j |

,

where si,j is the earliest time for which both the trajectory
and the center have information. This is simply the average
Euclidean distance between where a trajectory’s next point
is expected to be according to its transforms and its recorded
position.

Each trajectory is simply assigned the center to which it
has the least error:

ai = arg min
j

e(Xi, T j).

3.2.2 Center Refinement

In the center refinement step, given a number of assigned
trajectory snippets, each center’s transforms (a set of affine
transforms, one per frame) is re-estimated by solving the
least squares minimization for the transforms.

Given a center with transforms T j and assigned points
X1, X2 . . . Xk, we can refine the transforms by solving for
the cumulative transforms T j

t→0 according to

(T j
t→0)

(
X1

t X2
t · · · Xk

t

)
=
(

X1
0 X2

0 · · · Xk
0

)
.

Any other needed transforms can be calculated from the
cumulative transforms.

3.2.3 Trajectory Snippet Augmentation

Each trajectory snippet now has an associated center as-
signment. For each frame in the snippet, along with the
(dx, dy) information that it already contains, the snippet is
augmented with the affine matrix At

C(i) for the center asso-
ciated with it at the current frame. Each trajectory snippet
is of length 6L, 2L for the derivatives for each of L frames
and 4L for the parameters of the affine matrix.

4. Experiments
We evaluate our proposed method quantitatively on the

Hollywood Actions [11] dataset and qualitatively on a cus-
tom YouTube dataset.

4.1. Hollywood Actions

Table 1. Hollywood Actions Results

Action Ours Ours (Lax) Laptev et al. [11]
Total 31.1% 27.2% 27.1%

SitDown 4.5% 13.6% 20.7%
StandUp 69.0% 42.9% 40.0%

Kiss 71.4% 42.9% 36.5%
AnswerPhone 0.0% 35.0% 24.6%

HugPerson 0.0% 23.5% 17.4%
HandShake 5.3% 5.3% 12.1%

SitUp 11.1% 11.1% 5.7%
GetOutCar 7.7% 7.7% 14.9%

We evaluate on the Hollywood Actions dataset [11] in
order to gauge the performance in a difficult scenario. We
train and test on the “clean” (manually annotated) training
and testing sets. We track 100 features which are clustered
into 1000 trajectons using the AA-trajecton method with six
motion clusters per frame. Classification is performed using
a SVM with a linear kernel.

Per-class classification accuracies are presented in Ta-
ble 1 with a comparison to Laptev et al.’s HOF features. As
can be seen, with aggressive SVM settings we outperform
HOF at the cost of concentrating most of the discriminative
ability into a few classes (Hollywood Actions is an imbal-
anced dataset with some actions representing significantly
more than 1/8 of the total instances). With less aggressive

Figure 4. Sample frames from our YouTube dataset

SVM settings (labeled “lax” in Table 1), we still outper-
form HOF, and our gains can be seen in five out of the eight
classes.

4.2. YouTube Dataset

As an exploration of how our trajectons motion represen-
tation can fare in a difficult retrieval task, we evaluate qual-
itative search results on a custom YouTube dataset. This
dataset is composed of 2019 YouTube videos of an average
length of approximately 2 minutes each (or approximately
66 hours of video), some frames of which can be seen in
Fig. 4. Each raw YouTube video is split into overlapping
sequences of 2s such that one sequence starts each second
of each video. A library of 400 trajectons was used, using
100 tracked features and 6 motion clusters using the AA-
trajecton method. Trajecton histograms are accumulated
over these 2s windows, and search is performed over all of
these windows, and as a result we are effectively searching
over more than 230,000 clips.

4.2.1 Video Similarity with Trajectons

For video search, since we are doing a direct comparison
between videos without an intermediate machine learning
step, direct trajecton histogram comparisons with a chi-
squared distance would be dominated by the more common
trajecton bins. To account for this, following Chum et al. [5]
we downweight trajectons that occur frequently using tf-idf
weighting, the weights being placed into the diagonal ma-
trix W (or equivalently, all the trajecton histograms are ele-
ment wise multiplied with the weighting vector w), and the
histogram distance simply given by the chi-squared distance
between histograms weighted by w. The distance between
two videos is then given by

d(m1, m2) = chisqr(Wm1, Wm2), (1)

where mi is the trajecton histogram for a video i. The actual
search is performed by calculating the motion mi feature
vector for the query video clip and then comparing it to all
the dataset video clips using the distance metric in eq. 1.
The n video clips with the smallest distance are returned as
matches.

We randomly chose 25 windows to act as queries; we
have identified a number of common and interesting cases
in the clips.

4.2.2 Human Body Motion

Performance on whole-body human motions (such as rais-
ing one’s hands up) is reasonable. In the pictured exam-
ple (top row of Fig. 5), the best match is a false positive of
people bouncing up and down in a rollercoaster (mimicking
the up and down motion of the query video person’s arms).
However, the following two matches are correct.

4.2.3 Camera Motion (not shown here)

Performance in finding similar camera movements (e.g.,
panning, zooming) is very good, as expected. However,
since camera motions are so simple there is often little se-
mantic agreement between the matches (e.g., a POV shot
from a car driving along a road is motion-wise a match for
a zooming camera shot of a soccer game, but is semantically
unrelated).

4.2.4 Small Motion (Shaky Cam Failure Case)

Many scenes are largely static but filmed with handheld
cameras which introduces small whole-scene movements.
Since these movements are relatively strong and correlated
over the entire scene, the whole scene shaking dominates
the motion distance. Any semantically important motions
are lost in the movement, and the returned matches are
scenes where the camera shaking shares similar statisti-
cal properties rather than semantically interesting matches.
The tf-idf weighting is unable to help, since trajectons pro-
duced by strong random motion are uncorrelated with each
other and hence individually uncommon, so they will not be
downweighted by tf-idf.

In the pictured example (third row of Fig. 5), a video of
a baby taken with a handheld camera is incorrectly matched
to a number of unrelated scenes also filmed through hand-
held cameras. The third match of the motion only case is
arguably a correct match. These failure cases can largely be
avoided by preprocessing the video using a standard stabi-
lization technique that eliminates dominant frame motion.

4.2.5 Static Scenes (not shown here)

The most common types of video in our YouTube sample
are those showing static images to accompany music. Such
static scenes are trivially matched to other static scenes by
our technique, but trajectons alone (since they focus exclu-
sively on motion) are insufficient to determine whether the
content present in different static scenes is semantically re-
lated.

4.2.6 Interviews

Another common case is a person or group of people talk-
ing directly to a camera. This results in a combination of
handheld camera movement and person-like movement. In
the “Interview 1” section of Fig. 5, a small video of a cow-
boy musician interview has been correctly matched to two
interviews and incorrectly to a basketball game with similar
camera movement.

In the “Interview 2 (talking)” example the camera is
completely stationary and the person is quite still as well,
with mouth motion being the most prominent. This is cor-
rectly matched to two scenes of people talking, and sur-
prisingly correctly matched to a cartoon character talking
(likely because of the exaggerated mouth movements pro-
duced by cartoon characters).

5. Conclusions
We present a novel and concise method for using the

trajectories of tracked feature points in a bag of words
paradigm for video action recognition. Compared to ex-
isting motion features (optical flow, silhouettes, derivatives)
our quantized trajectory words or trajectons are able to take
advantage of the positive features of each class: the com-
putational efficiency of derivatives and sparse features, the
performance of optical flow, and the deep structure of sil-
houettes. However, on this third point we have barely
scratched the surface of using the structured information
content of trajectories, and we believe that there are still
significant gains to be made in this area. Future work will
concentrate on how to use the information within trajecto-
ries without making assumptions on trajectory consistency
or location.

5.1. Acknowledgements

This work was supported in part by NSF Grant
IIS-0534962 and by ERC program under Grant No.
EEC-0540865.

References
[1] S. Ali, A. Basharat, and M. Shah. Chaotic invari-

ants for human action recognition. In Proceedings
of IEEE International Conference on Computer Vision
and Pattern Recognition, 2007.

[2] S. Birchfield. KLT: An implementation of the Kanade-
Lucas-Tomasi feature tracker, 2007.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and
R. Basri. Actions as space-time shapes. In Proceed-
ings of International Conference on Computer Vision,
2005.

[4] C.-C. Chang and C.-J. Lin. LIBSVM – a library for
support vector machines, 2001.

Figure 5. Top matches for query videos on the YouTube dataset.

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisser-
man. Total Recall: Automatic query expansion with a
generative feature model for object retrieval. In Pro-
ceedings of International Conference on Computer Vi-
sion, 2007.

[6] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints.
In In Workshop on Statistical Learning in Computer
Vision, ECCV, 2004.

[7] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Be-
havior recognition via sparse spatio-temporal features.
In VS-PETS, 2005.

[8] A. Fathi and G. Mori. Action recognition by learning
mid-level motion features. In Proceedings of IEEE In-
ternational Conference on Computer Vision and Pat-
tern Recognition, 2008.

[9] I. N. Junejo, E. Dexter, I. Laptev, and P. Pérez.
Cross-view action recognition from temporal self-
similarities. In Proceedings of European Conference
on Computer Vision, 2008.

[10] Y. Ke, R. Sukthankar, and M. Hebert. Event detection
in crowded videos. In Proceedings of International
Conference on Computer Vision, June 2007.

[11] I. Laptev, M. Marszalek, C. Schmid, and B. Rozen-
feld. Learning realistic human actions from movies.
In Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition, 2008.

[12] O. Masoud and N. Papanikolopoulos. A method for
human action recognition. Image and Vision Comput-
ing, 21:729–743, 2003.

[13] V. Rabaud and S. Belongie. Re-thinking non-rigid
structure from motion. In Proceedings of IEEE Inter-
national Conference on Computer Vision and Pattern
Recognition, 2008.

[14] C. Rao, A. Yilmaz, and M. Shah. View-invariant rep-
resentation and recognition of actions. International
Journal of Computer Vision, 50(2), 2002.

[15] L. W. Renninger and J. Malik. When is scene iden-
tification just texture recognition? Vision Research,
44(19), 2004.

[16] M. Rodriguez, J. Ahmed, and M. Shah. Action
MACH: a spatio-temporal maximum average correla-
tion height filter for action recognition. In Proceedings
of IEEE International Conference on Computer Vision
and Pattern Recognition, 2008.

[17] C. Schuldt, I. Laptev, and B. Caputo. Recognizing
human actions: a local svm approach. In Proceedings
of International Conference on Pattern Recognition,
2004.

[18] E. Shechtman and M. Irani. Space-time behavior-
based correlation—or—how to tell if two underlying
motion fields are similar without computing them?
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11), 2007.

[19] S. Vitaladevuni, V. Kellokumpu, and L. Davis. Action
recognition using ballistic dynamics. In Proceedings
of IEEE International Conference on Computer Vision
and Pattern Recognition, 2008.

[20] D. Weinland, R. Ronfard, and E. Boyer. Free view-
point action recognition using motion history vol-
umes. Computer Vision and Image Understanding,
104(2), 2006.

[21] J. Winn, A. Criminisi, and T. Minka. Object catego-
rization by learned universal visual dictionary. In Pro-
ceedings of International Conference on Computer Vi-
sion, 2005.

[22] P. Yan, S. Khan, and M. Shah. Learning 4D action
feature models for arbitrary view action recognition.
In Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition, 2008.

[23] A. Yilmaz and M. Shah. Actions sketch: A novel
action representation. In Proceedings of IEEE Inter-
national Conference on Computer Vision and Pattern
Recognition, 2005.

