
25 Years of Model Checking ?

Edmund M. Clarke and Qinsi Wang

Computer Science Department, Carnegie Mellon University, USA

Abstract. Model Checking is an automatic verification technique for
large state transition systems. It was originally developed for reason-
ing about finite-state concurrent systems. The technique has been used
successfully to debug complex computer hardware, communication pro-
tocols, and software. It is beginning to be used for analyzing cyber-
physical, biological, and financial systems as well. The major challenge
for the technique is a phenomenon called the State Explosion Problem.
This issue is impossible to avoid in the worst case; but, by using sophis-
ticated data structures and clever search algorithms, it is now possible
to verify state transition systems with an astronomical number of states.
In this paper, we will briefly review the development of Model Checking
over the past 32 years, with an emphasis on model checking stochastic
hybrid systems.

1 Model Checking and State Explosion Problem

Model Checking, as a framework consisting of powerful techniques for verifying
finite-state systems, was independently developed by Clarke and Emerson [22]
and by Queille and Sifakis [52] in the early 1980s. Over the last few decades,
it has been successfully applied to numerous theoretical and practical prob-
lems [17, 20, 36, 37, 45, 63], such as verification of sequential circuit designs,
communication protocols, software device drivers, security algorithms, cyber-
physical systems, and biological systems. There are several major factors con-
tributing to its success. Primarily, Model Checking is fully automated. Unlike
deductive reasoning using theorem provers, this ‘push-button’ method neither
requires proofs nor experts to check whether a finite-state model satisfies given
system specifications. Besides verification of correctness, it permits bug detec-
tion as well. If a property does not hold, a model checker can return a diagnostic
counterexample denoting an actual execution of the given system model lead-
ing to an error state. Such counterexamples can then help detect subtle bugs.
Finally, from a practical aspect, Model Checking also works with partial spec-
ifications, which allows the separation of system design and development from
verification and debugging.

Typically, a model checker has three basic components: a modeling formalism
adopted to encode a state machine representing the system to be verified, a spec-
ification language based on Temporal Logics [51], and a verification algorithm

? This paper has been partly supported by the Office of Naval Research (ONR) under
grant 29749-1-1141240.



2 E. Clarke, Q. Wang

which employs an exhaustive searching of the entire state space to determine
whether the specification holds or not. Because of the exhaustive search, when
being applied to complex systems, all model checkers face an unavoidable prob-
lem in the worst case. The number of global states of a complex system can be
enormous. Given n processes, each having m states, their asynchronous compo-
sition may have mn states which is exponential in both the number of processes
and the number of states per process. In Model Checking, we refer to this as the
State Explosion Problem. Great strides have been made on this problem over the
past 32 years for various types of real-world systems. In the following sections,
we discuss major breakthroughs that have been made during the development
of Model Checking, and then briefly review the work adopting these techniques
for the analysis of stochastic hybrid systems, especially for probabilistic hybrid
automata.

2 Major Breakthroughs

2.1 Symbolic Model Checking with OBDDs

In the original implementation of the first model checking algorithm [22], the
transition system has an explicit representation using the adjacency lists. Such
an enumerative representation is feasible for concurrent systems with small num-
bers of processes and states per process, but not adequate for very large transi-
tion systems. In the fall of 1987, McMillan made a fundamental breakthrough.
He realized that by reformulating the original model checking procedure in a
symbolic way where sets of states and sets of transitions are represented rather
than individual states and transitions, Model Checking could be used to verify
larger systems with more than 1020 states [18]. The new symbolic representation
was based on Bryant’s ordered binary decision diagrams (OBDDs) [14]. In this
symbolic approach, the state graphs, which need to be constructed in the ex-
plicit model checking procedure, are described by Boolean formulas represented
by OBDDs. Model Checking algorithms can then work directly on these OBDDs.
Since OBDD-based algorithms are set-based, they cannot directly implement the
depth-first search, and thus the property automaton should also be represented
symbolically.

Since then, various refinements of the OBDD-based algorithms [10,16,35,54]
have pushed the size of state space count up to more than 10120 [16]. The most
widely used symbolic model checkers SMV [46], NuSMV [19], and VIS [13] are
based on these ideas.

2.2 Partial Order Reduction

As mentioned in Section 1, the size of the parallel composition of n processes
in a concurrent system may be exponential in n. Verifying a property of such a
system requires inspecting all states of the underlying transition system. That is,
n! distinct orderings of the interleaved executions of n states need to be consid-
ered in the setting where there are no synchronizations between the individual



32 Years of Model Checking 3

processes. This is even more serious for software verification than for hardware
verification, as software tends to be less structured than hardware. One of the
most successful techniques for dealing with asynchronous systems is partial or-
der reduction. Since the effect of concurrent actions is often independent of their
ordering, this method aims at decreasing the number of possible orderings, and
thus reducing the state space of the transition system that needs to be analyzed
for checking properties. Intuitively, if executing two events in either order results
in the same result, they are independent of each other. In this case, it is possible
to avoid exploring certain paths in the state transition system.

Partial order reduction crucially relies on two assumptions. One is that all
processes are fully asynchronous. The other is that the property to be checked
does not involve the intermediate states. When coping with realistic systems
where the processes may communicate and thus depend on one another, this
approach attempts to identify path fragments of the full transition system, which
only differ in the order of the concurrently executed activities. In this way, the
analysis of state space can be restricted to one (or a few) representatives of every
possible interleaving.

Godefroid, Peled, and Valmari have developed the concepts of incorporating
partial order reduction with Model Checking independently in the early 1990’s.
Valmari’s stubborn sets [60], Godefroid’s persistent sets [33], and Peled’s ample
sets [49] differ on the actual details but contain many similar ideas. The SPIN
model checker, developed by Holzmann [39], uses the ample-set reduction to
great advantage.

2.3 Bounded Model Checking

Although Symbolic Model Checking (SMC) with OBDDs has successfully im-
proved the scalability and is still widely used, OBDDs have multiple problems
which restrict the size of models that can be checked with this method. Since
the ordering of variables has to be identical for each path from the root of an
OBDD to a leaf node, finding a space-efficient ordering is critical for this tech-
nique. Unfortunately, it is quite difficult, sometimes impossible, to find an order
resulting in a small OBDD. Consider the formula for the middle output bit of
a combinational multiplier for two n-bit numbers. It can be proved that, for all
variable orderings, the size of the OBDD for this formula is exponential in n.

To further conquer the state explosion problem, Biere et al. proposed the
Bounded Model Checking (BMC) using Boolean satisfiability (SAT) solvers [9].
The basic idea for BMC is quite straightforward. Given a finite-state transition
system, a temporal logic property and a bound k (we assume k ≥ 1), BMC gen-
erates a propositional logical formula whose satisfiability implies the existence
of a counterexample of length k, and then passes this formula to a SAT solver.
This formula encodes the constraints on initial states, the transition relations
for k steps, and the negation of the given property. When the formula is un-
satisfiable (no counterexample found), we can either increase the bound k until
either a counterexample is found, or k reaches the upper bound on how much
the transition relation would need to be unwound for the completeness, or stop



4 E. Clarke, Q. Wang

if resource constraints are exceeded. As an industrial-strength model checking
technique, BMC has been observed to surpass SMC with OBDDs in fast detec-
tion of counterexamples of minimal length, in saving memory, and by avoiding
performing costly dynamic reordering. With a fast SAT solver, BMC can handle
designs that are order-of-magnitude larger than those handled by OBDD-based
model checkers.

As an efficient way of detecting subtle counterexamples, BMC is quite useful
in debugging. In order to prove correctness when no counterexamples are found
using BMC, an upper bound on steps to reach all reachable states needs to
be determined. It has been shown that the diameter (i.e., the longest shortest
path between any two states) of the state-transition system could be used as
an upper bound [9]. But, it appears to be computationally difficult to compute
the diameter when the state-transition system is given implicitly. Other ways for
making BMC complete are based on induction [55], cube enlargement [47], Craig
interpolants [48], and circuit co-factoring [32]. This problem remains a topic of
active research.

An interesting variation of the original BMC is to adopt a Satisfiability Mod-
ulo Theories (SMT) solver instead of a SAT solver [24, 59]. SMT encodings in
model checking have several advantages. The SMT encodings offers more power-
ful specification language. They use (unquantified) first-order formulas instead
of Boolean formulas, and use more natural and compact encodings, as there is no
need to convert high level constraints into Boolean logic formulas. These SMT
encodings also make the BMC work the same for finite and infinite state systems.
Above all, high level of automation has not been sacrificed for the above advan-
tages. CBMC is a widely used Bounded model checker for ANSI-C and C++
programs [42] , having supports for SMT solvers such as Z3 [27], and Yices [28].

2.4 Counterexample-Guided Abstraction Refinement

When the model state space is enormous, or even infinite, it is infeasible to con-
duct an exhaustive search of the entire space. Another method of coping with the
state explosion problem is to abstract away irrelevant details, according to the
property under consideration, from the concrete state transition system when
constructing the model. We call this approach abstraction. This simplification in-
curs information loss. Depending on the method used to control the information
loss, abstraction techniques can be distinguished into either over-approximation
or under-approximation techniques. The over-approximation methods enrich the
behavior of the system by releasing constraints. They establish a relationship be-
tween the abstract model and the original system so that the correctness of the
former implies the correctness of the latter. The downside is that they admit false
negatives, where there are properties which hold in the original system but fail
in the abstract model. Therefore, a counterexample found in the abstract system
may not be a feasible execution in the original system. These counterexamples
are called spurious. Conversely, the under-approximation techniques, which ad-
mit false positives, obtain the abstraction by removing irrelevant behavior from



32 Years of Model Checking 5

the system so that a specification violation at the abstract level implies a viola-
tion of the original system.

The counterexample-guided abstraction refinement (CEGAR) technique [21]
integrates an over-approximation technique - existential abstraction [23] - and
SMC into a unified, and automatic framework. It starts verification against uni-
versal properties with an imprecise abstraction, and iteratively refines it accord-
ing to the returned spurious counterexamples. When a counterexample is found,
its feasibility with regard to the original system needs to be checked first. If
the violation is feasible, this counterexample is reported as a witness for a bug.
Otherwise, a proof of infeasibility is used to refine the abstraction. The pro-
cedure then repeats these steps until either a real counterexample is reported,
or there is no new counterexamples returned. When the property holds on the
abstract model, by the Property Preservation Theorem [23], it is guaranteed for
the property to be correct in the concrete systems. CEGAR is used in many
software model checkers including the SLAM project [6] at Microsoft.

3 Model Checking and Stochastic Hybrid Systems

Stochastic hybrid systems (SHSs) are a class of dynamical systems that in-
volve the interaction of discrete, continuous, and stochastic dynamics. Due to
the generality, SHSs have been widely used in distinct areas, including biolog-
ical systems, cyber-physical systems, and finance [12]. To describe uncertain-
ties, randomness has been added to hybrid systems in a number of ways. A
wealth of models has been promoted over the last decade. One class of models
combines deterministic flows with probabilistic transitions. When state changes
forced by continuous dynamics involve discrete random events, we refer to them
as probabilistic hybrid automata (PHAs) [56]. PHAs are akin to Markov de-
cision processes (MDPs) [8], which determine both the discrete and continu-
ous successor states. When state changes involve continuous random events as
well, we call them stochastic hybrid automata (SHAs) [29]. Some models allow
that state changes may happen spontaneously, such as piecewise deterministic
Markov processes (PDMPs) [26], which are similar to continuous-time Markov
chains (CTMCs) [58]. Other models replace deterministic flows with stochastic
ones, such as stochastic differential equations (SDEs) [5] and stochastic hybrid
programs (SHPs) [50], where the random perturbation affects the dynamics con-
tinuously. When all such ingredients have been covered, there are models such
as the general stochastic hybrid systems (GSHSs) [15,40].

The popularity of SHSs in real-world applications plays an important role
as the motivation for putting a significant research effort into the foundations,
analysis and control methods for this class of systems. Among various problems,
one of the elementary questions for the quantitative analysis of SHSs is the
probabilistic reachability problem. There are two main reasons why it catches
researchers’ attention. Primarily, it is motivated by the fact that most temporal
properties can be reduced to reachability problems due to the very expressive
hybrid modeling framework. Moreover, probabilistic state reachability is a hard



6 E. Clarke, Q. Wang

and challenging problem which is undecidable in general. Intuitively, this class
of problems is to compute the probability of reaching a certain set of states.
The set may represent a set of certain unsafe states which should be avoided or
visited only with some small probability, or dually, a set of good states which
should be visited frequently.

Over the last decade, research efforts concerning SHSs are rapidly increasing.
At the same time, Model Checking methods and tools for probabilistic systems,
such as PRISM [44], MRMC [41], and Ymer [65], have been proposed and de-
signed. Results related to the analysis and verification of SHSs are still limited.
For instance, analysis approaches for GSHSs are often based on Monte-Carlo sim-
ulation [11,53]. Considering the hardness of dealing with the general class, efforts
have been mainly placed on different subclasses [1–3,29,30,34,50,56,62,66,67].

For a decidable subclass which is called probabilistic initialized rectangu-
lar automata (PIRAs), Sproston offered a model checking procedure against
the probabilistic branching time logic (PBTL) [56]. The procedure first trans-
lates PIRA to a probabilistic timed automaton (PTA), then constructs a finite-
state probabilistic region graph for the PTA, and employs existing PBTL Model
Checking techniques. For probabilistic rectangular automata (PRAs) which are
less restricted than PIRAs, Sproston proposed a semi-decidable model checking
procedure via using a forward search through the reachable state space [57].

For a more expressive class of models - probabilistic hybrid automata (PHAs),
Zhang et al. abstracted the original PHA to a probabilistic automaton (PA),
and then used the established Model Checking methods for the abstracting
model [66]. Hahn et al. also discussed an abstraction-based method where the
given PHA was translated into a n-player stochastic game using two different
abstraction techniques [34]. All abstractions obtained by these methods are over-
approximations, which means that the estimated maximum probability for a
safety property on the abstracted model is no less than the one on the original
model. Another method proposed is a SMT-based bounded Model Checking pro-
cedure [30]. We will discuss these methods in detail in the following subsections.

A similar class of models, which is widely used in the control theory, is called
discrete-time stochastic hybrid systems (DTSHSs) [4]. Akin to PHAs, DTSHSs
comprise nondeterministic as well as discrete probabilistic choices of state tran-
sitions. Unlike PHAs, DTSHSs are sampled at discrete time points, use control
inputs to model nondeterminism, do not have an explicit notion of symbolic
transition guards, and support a more general concept of randomness which can
describe discretized stochastic differential equations. With regard to the system
analysis, the control problem concerned can be understood as to find an optimal
control policy that minimizes the probability of reaching unsafe states. A back-
ward recursive procedure, which uses dynamic programming, was then proposed
to solve the problem [1,4]. Another approach to a very similar problem as above,
where a DTSHS model doesn’t have nondeterministic control inputs, was pre-
sented in [2]. Compared to former method, the latter approach exploits the grid
to construct a discrete-time Markov chain (DTMC), and then employs standard
model checking procedures for it. This approach then had been used in [3] as an



32 Years of Model Checking 7

analysis procedure for the probabilistic reachability problems in the product of a
DTSHS and a Büchi automaton representing a linear temporal property. Zuliani
et al. also mentioned a simulation-based method for model checking DTSHSs
against bounded temporal properties [67]. We refer to this method as Statistical
Model Checking (StatMC). The main idea of StatMC is to generate enough sim-
ulations of the system, record the checking result returned from a trace checker
from each simulation, and then use statistical testing and estimation methods to
determine, with a predefined degree of confidence, whether the system satisfies
the property. Although this statistical model checking procedure does not belong
to the class of exhaustive state-space exploration methods, it usually returns re-
sults faster than the exhaustive search with a predefined arbitrarily small error
bound on the estimated probability.

In [29], as an extension of PHAs, stochastic hybrid automata (SHAs) allow
continuous probability distributions in the discrete state transitions. With re-
spect to the verification procedure, a given SHA is firstly over-approximated by a
PHA via discretizing continuous distributions into discrete ones with the help of
additional uncountable nondeterminism. As mentioned, this over-approximation
preserves safety properties. For the second step, the verification procedure in-
troduced in [66] is exploited to model check the over-approximating PHA.

Another interesting work is about stochastic hybrid programs (SHPs) intro-
duced in [50]. This formalism is quite expressive with regard to randomness:
it takes stochastic differential equations, discrete probabilistic branching, and
random assignments to real-valued variables into account. To specify system
properties, Platzer proposed a logic called stochastic differential dynamic logic,
and then suggested a proof calculus to verify logical properties of SHPs.

Among these different models and methods mentioned above, of particular
interest for this paper are PHAs. In the remainder of this section, we will review
two kinds of interesting techniques - abstraction-based, and BMC-based methods
- proposed for probabilistic reachability and safety analysis for PHAs.

3.1 Probabilistic Hybrid Automata

Before going into the details of model checking algorithms, we recall the defini-
tions of PHAs as given in [56].

Definition 1. (Probabilistic Hybrid Automata) A probabilistic hybrid automa-
ton H is a tuple (M , m̄, k, 〈Postm〉m∈M , Cmds) where

– M := {m1,m2, · · · ,mn} is a finite set of control modes.
– m̄ ⊆ M is the set of initial modes.
– k is the dimension of the automaton, i.e. the number of system variables.
– 〈Postm〉m∈M indicates continuous-time behaviors on each mode.
– Cmds is a finite set of probabilistic guarded commands of the following form:
g → p1 : u1 + · · · + pn : un,
where g is a predicate representing a transition guard, and pi and ui are
the corresponding transition probability and updating function for the ith
probabilistic choice respectively (1 ≤ i ≤ n).



8 E. Clarke, Q. Wang

The semantics of a probabilistic hybrid automaton is a probabilistic automa-
ton [56] which is formally defined as follows.

Definition 2. (Semantics of Probabilistic Hybrid Automata) The semantics
of a probabilistic hybrid automaton H is a probabilistic automaton PA [[H]] =
(S, s̄, Act, T ), where

– S = M × Rk denotes the (possibly uncountable) set of states.
– s̄ = (m̄, 0, · · · , 0) is the set of initial states.
– Act = R≥0 ] Cmds describes the transition relation. Note that, ] denotes

the disjoint union.
– T : for each s ∈ S, it may have two types of transitions. The first one is from

command g → p1 : u1 + · · · + pn : un by u(s) when g is fulfilled. The
second one is from time t by Postm(s, t).

3.2 Abstraction-based Methods

Zhang et al. presented an abstraction-based method for verifying safety prop-
erties in probabilistic hybrid automata (PHAs) [66]. The main underlying idea
is to compute finite probabilistic automata (PAs) via abstractions for PHAs,
and then estimate the reachability probabilities of the over-approximating PAs
with the help of existing methods. In detail, the verification procedure works as
follows. To construct a safe over-approximation for a given PHA, the method
first considers a non-probabilistic hybrid automaton (HA) obtained by replacing
probabilistic choices with nondeterministic ones. Then, this classical HA is ab-
stracted into a finite-state abstraction, where PHAVer [31] can be employed. As
the final step of the abstraction, the finite-state abstraction is decorated with
probabilities via techniques known for Markov decision processes [25,38], result-
ing in a probabilistic finite-state automaton. Figure 1 illustrates the entire ab-
straction process for an example PHA. After building a safe over-approximation,
the probability of reaching unsafe states in the probabilistic abstraction is esti-
mated using value iteration [8]. Since it is computing over-approximations, the
abstraction preserves the safety property: if the probability of reaching unsafe
state regions in the abstracting probabilistic automaton is bounded by p, this
is also the case in the original probabilistic hybrid automaton. In other words,
p is a safe upper bound for the reachability probability of the original model,
and if a safety property holds in in the abstraction, it holds also in the concrete
system. Otherwise, refinement of the abstraction is required to obtain a poten-
tially more precise upper bound. The realization of this refinement depends on
the exploited abstraction technique. For example, PHAVer computes polyhedra
to cover the continuous state-space for each discrete location. Refinement can
be done by reducing the maximal widths of these polyhedra.

To estimate the maximum/minimum probability of reaching a certain state
region, Hahn et al. proposed another abstraction-based approach [34]. This ap-
proach considers two different abstraction methods - a game-based approach [43]
and an environment abstraction [61]. Both methods abstract a given PHA by an



32 Years of Model Checking 9

n-player stochastic game, and allow us to obtain both lower and upper bounds
for quantitative properties. In a bit more detail, the semantics of a PHA is firstly
expressed as a (stochastic) 2-player game, where one player represents the con-
troller and the other the environment. Both abstraction methods represent the
obtained abstraction as a separate player in the game resulting in a 3-player
stochastic game. Then, with the first method, this 3-player game is reduced to
a 2-player stochastic game. The second method makes this new player collab-
orate with the player representing the environment in the PHA. By adjusting
the strategy of the player denoting the abstraction to maximize (or minimize)
the probability of reaching the target states, the upper (or lower) bound on the
optimal reachability probability for the original automaton can be obtained from
the abstraction. This approach establishes a verification as well as falsification
procedure for probabilistic safety properties.

3.3 BMC-based Methods

Fränzle et al. presented an fully symbolic analyzing method of probabilistic
bounded reachability problems of PHAs without resorting to over-approximation
by intermediate finite-state abstractions [30]. When reasoning about PHAs, the
authors use the SMT solving as a basis, and extends it by defining a novel ran-
domized quantification over discrete variables. This method saves virtues of the
SMT-based Bounded Model Checking, and harvests its recent advances in ana-
lyzing general hybrid systems. This new framework is referred to as Stochastic
Satisfiability Modulo Theories (SSMT). In detail, an SSMT formula Φ can be
defined in this format: Φ = Q1x1 ∈ dom(x1) · · · Qnxn ∈ dom(xn): φ, where
φ is a quantifier-free SMT formula. Q1x1 ∈ dom(x1) · · · Qnxn ∈ dom(xn) is
the prefix of Φ, binding variables xi to the quantifier Qi. Note that not every
variable occurring in φ has to be bound by a quantifier. In the framework of
SSMT, a quantifier Qi is either a classical existential quantifier, denoted as ∃, or
a newly introduced randomized quantifier, denoted as

R

di
, where di is a finite

discrete probability distribution over dom(xi). The notation di is usually a list
〈(v1, p1), · · · , (vm, pm)〉, where pj is the probability of assigning xi to vi. The
semantics of an SSMT problem is defined by the maximum probability of sat-
isfaction, which is designed for computing the maximal reachability probability.
Formally, the maximum probability of satisfaction Pr(Φ) of an SSMT formula
Φ is defined recursively as follows.

– Pr(φ) = 1 if φ is satisfiable, and 0 otherwise;
– Pr(∃xi ∈ dom(xi) · · ·Qnxn ∈ dom(xn) : φ) =
maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) · · ·Qnxn ∈ dom(xn) : φ[v/xi]); and

– Pr(

R

dixi ∈ dom(xi) · · ·Qnxn ∈ dom(xn) : φ) =∑
(v,p)∈dom(xi)

p · Pr(Qi+1xi+1 ∈ dom(xi+1) · · ·Qnxn ∈ dom(xn) : φ[v/xi]).

To analyze PHAs, the probabilistic bounded reachability problems need to
be encoded in SSMT formulas. The construction procedure contains two steps.
First of all, akin to the SMT-based BMC, an SMT formula is used to express



10 E. Clarke, Q. Wang

Init

Heat
dT/dt = 2
T <= 10 
t <= 3

Check
dT/dt = -T/2

t <= 1
Error

Cool
dT/dt = -T

T >= 5

true -> (9 <= T’ <= 10 /\ t’ = 0) T >= 9 -> (T’ = T /\ t’ = 0)

t >= 2 -> (T’ = T /\ t’ = 0)
T <= 6 -> (T’ = T /\ t’ = 0)

t >= 0.5 ->

0.95: (T’ = T /\ t’ = 0)

0.05: (T’ = T /\ t’ = 0)

Z0: Init
Z1: Heat

t>=0, c>=0,
t<=c, T<=10

IH 
(jump from Init 

to Heat)

HCh
Z2: Check

t>=0, c>=2,
t<=c-2, T<=10

Z3: Error
c<=5

ChE

Z5: Heat
t>=0, c>=2.5,

t<=c-2.5, T<=10

Z6: Check
t>=0, c>=4.5,

t<=c-4.5, T<=10
HCh

Z7: Heat
t>=0, c>=0,

t<=c-5, T<=10

ChH
Z5: Heat

t>=0, c>=2.5,
t<=c-2.5, T<=10

CoHHCo

O
ver-approxim

ation of

Init

Heat
dT/dt = 2
T <= 10 
t <= 3

Check
dT/dt = -T/2

t <= 1
Error

Cool
dT/dt = -T

T >= 5

true -> (9 <= T’ <= 10 /\ t’ = 0) T >= 9 -> (T’ = T /\ t’ = 0)

t >= 2 -> (T’ = T /\ t’ = 0)
T <= 6 -> (T’ = T /\ t’ = 0)

t >= 0.5 -> (T’ = T /\ t’ = 0)

t >= 0.5 -> (T’ = T /\ t’ = 0)

ChE

ChH

Construct a hybrid 
automaton

Abstract to a finite-
state abstraction

Add probabilities

Z0: Init
Z1: Heat

t>=0, c>=0,
t<=c, T<=10

IH HCh
Z2: Check

t>=0, c>=2,
t<=c-2, T<=10

Z3: Error
c<=5

Z5: Heat
t>=0, c>=2.5,

t<=c-2.5, T<=10

Z6: Check
t>=0, c>=4.5,

t<=c-4.5, T<=10
HCh

Z7: Heat
t>=0, c>=0,

t<=c-5, T<=10

Ch

Z5: Heat
t>=0, c>=2.5,

t<=c-2.5, T<=10

CoH
HCo

Ch
0.95

0.05 0.05

0.95

Fig. 1: Abstraction steps for a probabilistic hybrid automaton for the thermostat



32 Years of Model Checking 11

all runs of the given PHA of the given length k, ignoring both nondeterministic
and probabilistic transitions. Quantification is then added to encode the missing
nondeterministic and probabilistic choices. Existential quantifiers reflect nonde-
terministic choices and randomized quantifiers describe probabilistic transitions.
With this encoding, the step-bounded reachability analysis of probabilistic hy-
brid automata is reduced to calculating the maximum probability of satisfaction
of an SSMT formula. To compute the maximum satisfaction probability, an al-
gorithm, which was discussed in [30], consists of three layers - a theory solver,
an SMT solver, and an SSMT solver. The first two solvers are the same as the
corresponding parts in widely used SMT solvers, such as Z3 [27], and CVC4 [7].
The last SSMT layer is an extension of the SMT layer to cope with existential
and randomized quantification.

Another BMC-based approach to the falsification of safety properties was
promoted by Wimmer et al. [64]. Although the stochastic models that they
consider are discrete-time Markov chains (DTMCs), DTMCs are quite similar to
PHAs except that the former do not support nondeterminism. Also, its analysis
technique is closely related to the one in [30]. It works as follows. First of all, the
given safety property is reduced to a state reachability one through removing
edges from the given DTMC. Then, it encodes the behavior of the given DTMC
with length k and the reachability property as an SAT formula as the case
for SAT-based BMC. During this step, probabilistic transitions are treated as
nondeterministic ones, and the transition probability matrix of the given DTMC
is stored in order to be able to track the transition probabilities between states
in the near future. Thereafter, the Boolean formula with the depth-bound k
is solved by a SAT solver. If the formula is satisfiable, the returned satisfying
assignment is used to extract a system execution of length k. The probability of
this execution is computed according to the preserved probability matrix. After
adding a clause representing the negation of the last returned assignment, the
SAT solver is called again to find another execution reaching the target states.
These steps are repeated until the SAT solver returns “unsat” for a modified
formula for length k. Then, it generates a new Boolean formula for depth step k+
1, and calls the SAT again. The overall procedure terminates if the accumulated
probability of all collected system runs reaching the given unsafe states exceeds
a given threshold, which is used to falsify the safety property. To reduce the
number of calls to the SAT solver, the authors propose some optimizations. The
most important one tries to detect loops in executions reaching the target states
in order to achieve infinitely many runs from one solver invocation.

4 Conclusion and future work

Model Checking has proved to be a highly successful technology. Over the last
32 years, we have witnessed enormous progress on improving performance, on
enhancing scalability, and on expanding applications in the area of Model Check-
ing. The progress has increased our knowledge, but also opened many questions
and research directions. Efforts are still needed to further conquer the state ex-



12 E. Clarke, Q. Wang

plosion problem in Software Model Checking. More effective model checking al-
gorithms are required for real-time and hybrid systems, and are badly in need for
even more complex systems, such as stochastic hybrid systems. Moreover, there
are various directions, including combining model checking and static analy-
sis, compositional model checking of complex systems, symmetry reduction and
parameterized model checking, integrating model checking and theorem prov-
ing, interpreting long and complicated counterexamples, extending CEGAR for
probabilistic systems, and scaling up even more!

References

1. A. Abate. Probabilistic reachability for stochastic hybrid systems: Theory, compu-
tations, and applications. ProQuest, 2007.

2. A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. A two-step scheme for
approximate model checking of stochastic hybrid systems. In Proceedings of the
18th IFAC World Congress. IFAC, 2011.

3. A. Abate, J.-P. Katoen, and A. Mereacre. Quantitative automata model checking
of autonomous stochastic hybrid systems. In Proceedings of the 14th international
conference on Hybrid Systems: Computation and Control, pages 83–92. ACM, 2011.

4. S. Amin, A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Reachability anal-
ysis for controlled discrete time stochastic hybrid systems. In Hybrid Systems:
Computation and Control, pages 49–63. Springer, 2006.

5. L. Arnold. Stochastic Differential Equations: Theory and Applications. Wiley -
Interscience, 1974.

6. T. Ball and S. K. Rajamani. The SLAM toolkit. In Computer-Aided Verification,
pages 260–264. Springer, 2001.

7. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. In Computer-Aided Verification, pages 171–
177. Springer, 2011.

8. R. Bellman. A Markovian decision process. Technical report, DTIC Document,
1957.

9. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. Springer, 1999.

10. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model check-
ing of linear time logic properties. In Computer-Aided Verification, pages 222–235.
Springer, 1999.

11. H. A. Blom and E. A. Bloem. Particle filtering for stochastic hybrid systems. In
43rd IEEE Conference on Decision and Control, volume 3, pages 3221–3226. IEEE,
2004.

12. H. A. Blom, J. Lygeros, M. Everdij, S. Loizou, and K. Kyriakopoulos. Stochastic
hybrid systems: theory and safety critical applications. Springer, 2006.

13. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, et al. VIS: A system
for verification and synthesis. In Computer-Aided Verification, pages 428–432.
Springer, 1996.

14. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 100(8):677–691, 1986.



32 Years of Model Checking 13

15. M. L. Bujorianu and J. Lygeros. General stochastic hybrid systems. In IEEE
Mediterranean Conference on Control and Automation MED, volume 4, pages 174–
188, 2004.

16. J. Burch, E. M. Clarke, and D. Long. Symbolic model checking with partitioned
transition relations. Computer Science Department, page 435, 1991.

17. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit ver-
ification using symbolic model checking. In 27th ACM/IEEE Design Automation
Conference, pages 46–51. IEEE, 1990.

18. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang. Symbolic
model checking: 1020 states and beyond. In Fifth Annual IEEE Symposium on
Logic in Computer Science, pages 428–439. IEEE, 1990.

19. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model checker. International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

20. K. Claessen, J. Fisher, S. Ishtiaq, N. Piterman, and Q. Wang. Model-checking
signal transduction networks through decreasing reachability sets. In Computer-
Aided Verification, pages 85–100. Springer, 2013.

21. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer-Aided Verification, pages 154–169. Springer,
2000.

22. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. Springer, 1982.

23. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. ACM transactions on Programming Languages and Systems (TOPLAS),
16(5):1512–1542, 1994.

24. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-based bounded model check-
ing for embedded ANSI-C software. IEEE Transactions on Software Engineering,
38(4):957–974, 2012.

25. P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reachability analysis
of probabilistic systems by successive refinements. In Process Algebra and Proba-
bilistic Methods. Performance Modelling and Verification, pages 39–56. Springer,
2001.

26. M. H. Davis. Piecewise-deterministic Markov processes: A general class of non-
diffusion stochastic models. Journal of the Royal Statistical Society. Series B
(Methodological), pages 353–388, 1984.

27. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

28. B. Dutertre and L. De Moura. The yices SMT solver. Tool paper at http://yices.
csl. sri. com/tool-paper. pdf, 2:2, 2006.

29. M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang. Measurability
and safety verification for stochastic hybrid systems. In Proceedings of the 14th
international conference on Hybrid Systems: Computation and Control, pages 43–
52. ACM, 2011.

30. M. Fränzle, H. Hermanns, and T. Teige. Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In Hybrid Systems:
Computation and Control, pages 172–186. Springer, 2008.

31. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
Hybrid Systems: Computation and Control, pages 258–273. Springer, 2005.

32. M. K. Ganai, A. Gupta, and P. Ashar. Efficient SAT-based unbounded symbolic
model checking using circuit co-factoring. In Proceedings of the 2004 IEEE/ACM
International conference on Computer-Aided Design, pages 510–517. IEEE, 2004.



14 E. Clarke, Q. Wang

33. P. Godefroid. Using partial orders to improve automatic verification methods. In
Computer-Aided Verification, pages 176–185. Springer, 1991.

34. E. M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang. Game-based ab-
straction and controller synthesis for probabilistic hybrid systems. In Quantitative
Evaluation of Systems (QEST), 2011 Eighth International Conference on, pages
69–78. IEEE, 2011.

35. R. Hardin, R. Kurshan, S. Shukla, and M. Vardi. A new heuristic for bad cycle
detection using BDDs. In Computer-Aided Verification, pages 268–278. Springer,
1997.

36. K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol verification. In FME’96: Industrial Benefit and Advances in Formal
Methods, pages 662–681. Springer, 1996.

37. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
BLAST. In Model Checking Software, pages 235–239. Springer, 2003.

38. H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In Computer-
Aided Verification, pages 162–175. Springer, 2008.

39. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

40. J. Hu, J. Lygeros, and S. Sastry. Towards a theory of stochastic hybrid systems.
In Hybrid Systems: Computation and Control, pages 160–173. Springer, 2000.

41. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In
Second International Conference on the Quantitative Evaluation of Systems, pages
243–244. IEEE, 2005.

42. D. Kroening and M. Tautschnig. CBMC – C bounded model checker. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 8413
of LNCS, pages 389–391. Springer, 2014.

43. M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov
decision processes. In Third International Conference on Quantitative Evaluation
of Systems, pages 157–166. IEEE, 2006.

44. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd
International Conference on Computer-Aided Verification, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

45. W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols. Technical
report, DTIC Document, 1997.

46. K. L. McMillan. Symbolic model checking. Springer, 1993.

47. K. L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Computer-Aided Verification, pages 250–264. Springer, 2002.

48. K. L. McMillan. Interpolation and SAT-based model checking. In Computer Aided
Verification, pages 1–13. Springer, 2003.

49. D. Peled. All from one, one for all: on model checking using representatives. In
Computer-Aided Verification, pages 409–423. Springer, 1993.

50. A. Platzer. Stochastic differential dynamic logic for stochastic hybrid programs.
In Automated Deduction–CADE-23, pages 446–460. Springer, 2011.

51. A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, 1977, pages 46–57. IEEE, 1977.

52. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In International Symposium on Programming, pages 337–351. Springer,
1982.



32 Years of Model Checking 15

53. D. Riley, X. Koutsoukos, and K. Riley. Modeling and simulation of biochemical
processes using stochastic hybrid systems: The sugar cataract development process.
In Hybrid Systems: Computation and Control, pages 429–442. Springer, 2008.

54. R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, explicit proper-
ties: on hybrid approaches for LTL symbolic model checking. In Computer-Aided
Verification, pages 350–363. Springer, 2005.

55. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a SAT-solver. In Formal Methods in Computer-Aided Design, pages 127–144.
Springer, 2000.

56. J. Sproston. Decidable model checking of probabilistic hybrid automata. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 31–45. Springer, 2000.

57. J. Sproston. Model checking for probabilistic timed and hybrid systems. In PhD
thesis. School of Computer Science, University of Birmingham, 2001.

58. H. C. Tijms. A first course in stochastic models. John Wiley and Sons, 2003.
59. C. Tinelli. SMT-based model checking. In NASA Formal Methods, page 1, 2012.
60. A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri

Nets 1990, pages 491–515. Springer, 1991.
61. B. Wachter and L. Zhang. Best probabilistic transformers. In Verification, Model

Checking, and Abstract Interpretation, pages 362–379. Springer, 2010.
62. Q. Wang, P. Zuliani, S. Kong, S. Gao, and E. M. Clarke. SReach: A bounded

model checker for stochastic hybrid systems. CoRR, abs/1404.7206, 2014.
63. Q. Wang, P. Zuliani, S. Kong, S. Gao, and E. M. Clarke. SReach: Combining

statistical tests and bounded model checking for nonlinear hybrid systems with
parametric uncertainty. Technical report, Computer Science Department, Carnegie
Mellon University, 2014.

64. R. Wimmer, B. Braitling, and B. Becker. Counterexample generation for discrete-
time Markov chains using bounded model checking. In Verification, Model Check-
ing, and Abstract Interpretation, pages 366–380. Springer, 2009.

65. H. L. Younes. Ymer: A statistical model checker. In Computer-Aided Verification,
pages 429–433. Springer, 2005.

66. L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn. Safety verification
for probabilistic hybrid systems. European Journal of Control, 18(6):572–587, 2012.

67. P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with
application to simulink/stateflow verification. In Proceedings of the 13th ACM
international conference on Hybrid Systems: Computation and Control, pages 243–
252. ACM, 2010.


