1. A bag contains 8 pairs of shoes; each pair is a different style. You pick two random shoes from the bag.
 (a) What is the probability that the two shoes you picked out are a pair; i.e. left and right of the same style?
 (b) What is the probability you picked one left shoe and one right shoe?
2. How many solutions are there to the inequality $x_1 + x_2 + x_3 \leq 11$, where x_1, x_2, x_3 are non-negative integers.
3. Suppose a department has 10 men and 15 women. How many ways can we form a committee with six members, if it must have more women than men?
4. How many ways are there to choose a half dozen donuts from 10 varieties
 a. If there are no two donuts of the same variety.
 b. If there are at least two varieties.
 c. If there must be at least one but no more than 4 glazed
5. Given a set $A = \{a,b,c,d,e\}$,
 a. How many different sequences of type A of length $n>0$ exist that contain at most one a?
 b. How many subsets of A are there?
 c. How many non-empty subsets of A are there?
 d. How many subsets of size 3 can you create from A?
 e. How many subsets of A are there that are entirely vowels or entirely consonants?
 f. How many subsets of A are there that have at least one vowel and one consonant?
 g. How many subsets of A of size 3 contain exactly one vowel.
 h. How many ways can you arrange the letters in A?
 i. How many ways can the letters of A be arranged so that all of the vowels are together?
 j. How many ways can you arrange the letters of A so that it is not the case that all of the vowels are together?
 k. How many ways can you arrange the letters in A so that vowels and consonants alternate and the arrangement begins with a consonant.
 l. What is the probability that such a string has no a?
 m. What is the probability that such a string has no b given that it has no a?
6. How many distinct permutations are there of the letters in “perfect”?
7. Billy takes two tests in his probability and statistics class. The probability that Billy would pass at least one test is 0.9. The probability that he passes both tests is 0.7. The tests are of equal difficulty (that is, the probability that Billy passes test 1 is the same as the probability that he passes test 2.) What is the conditional probability of Billy passing test 2 given the event that he passes test 1?
8. Let A and B be events such that $A \subseteq B$. Can A and B be independent?
9. Three persons roll a fair 4-sided die once. Let B_{ij} be the event that person i and person j roll the same face. Show that the events B_{12}, B_{13}, and B_{23} are pairwise independent but are not independent.
10. Let $P(A)=.5$, $P(B)=.6$, and $P(A \cap B^c)=.2$. Are A and B independent? What is $P(A \cap B | A \cup B)$?