Announcements

- Midterm: next week Wednesday
 - Closed book
 - Lectures 1-13
 - Questions similar to what is on the homeworks
- Surveys: will announce schedule soon
 - You can get started right away
 - Don’t forget to hand in draft slides (see handout)
 - TAs will present example survey this Wednesday
- Homework 2 has been posted
 - Answers will be posted right after deadline
 - Project assignment has been posted
 - Send e-mail right away if you have questions

Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11*
- 802.11 QoS

Management and Control Services

- Association management
- Handoff
- Security: authentication and privacy
- Power management
- QoS

802.11: Infrastructure Reminder

- Station (STA) - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Access Point - station integrated into the wireless LAN and the distribution system
- Basic Service Set (BSS) - group of stations using the same AP
- Portal - bridge to other (wired) networks
- Distribution System - interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

Service Set Identifier - SSID

- Mechanism used to segment wireless networks
 - Multiple independent wireless networks can coexist in the same location
 - Effectively the name of the wireless network
- Each AP is programmed with a SSID that corresponds to its network
- Client computer presents correct SSID to access AP
- Security Compromises
 - AP can be configured to “broadcast” its SSID
 - Broadcasting can be disabled to improve security
 - SSID may be shared among users of the wireless segment
Association Management

- Stations must associate with an AP before they can use the wireless network
 - AP must know about them so it can forward packets
 - Often also must authenticate
- Association is initiated by the wireless host – involves multiple steps:
 1. Scanning: finding out what access points are available
 2. Selection: deciding what AP (or ESS) to use
 3. Association: protocol to "sign up" with AP – involves exchange of parameters
 4. Authentication: needed to gain access to secure APs – many options possible
- Disassociation: station or AP can terminate association

Association Management: Scanning

- Stations can detect AP based by scanning
- Passive Scanning: station simply listens for Beacon and gets info of the BSS
 - Beacons are sent roughly 10 times per second
 - Power is saved
- Active Scanning: station transmits Probe Request; elicits Probe Response from AP
 - Saves time + is more thorough
 - Wait for 10-20 msec for response
- Scanning all available channels can become very time consuming!
 - Especially with passive scanning
 - Cannot transmit and receive frames during most of that time – not a big problem during initial association

Association Management: Selecting an AP and Joining

- Selecting a BSS or ESS typically must involve the user
 - What networks do you trust? Are you willing to pay?
 - Can be done automatically based on stated user preferences (e.g. the "automatic" list in Windows)
- The wireless host selects the AP it will use in an ESS based on vendor-specific algorithm
 - Uses the information from the scan
 - Typically simply joins the AP with the strongest signal
- Associating with an AP
 - Synchronization in Timestamp Field and frequency
 - Adopt PHY parameters
 - Other parameters: BSSID, WEP, Beacon Period, etc.

Association Management: Roaming

- Reassociation: association is transferred from active AP to a new target AP
 - Supports mobility in the same ESS – layer 2 roaming
- Reassociation is initiated by wireless host based on vendor specific algorithms
 - Implemented using an Association Request Frame that is sent to the new AP
 - New AP accepts or rejects the request using an Association Response Frame
- Coordination between APs is defined in 802.11f
 - Allows forwarding of frames in multi-vendor networks
 - Inter-AP authentication and discovery typically coordinated using a RADIUS server
 - "Fast roaming" support (802.11r) also streamlines authentication and QoS, e.g. for VoIP

Association Management Algorithms

- Failure driven: only try to reassociate after connection to current AP is lost
 - Typically efficient for stationary clients since it not common that the best AP changes during a session
 - Mostly useful for nomadic clients
 - Can be very disruptive for mobile devices
- Proactive reassociation: periodically try to find an AP with a stronger signal
 - Tricky part: cannot communicate while scanning other channels
 - Trick: user power save mode to "hold" messages
 - Throughput during scanning is still affected though
 - Mostly affects latency sensitive applications
Outline

- Brief history
- 802 protocol overview
- Wireless LANs – 802.11 – overview
- 802.11 MAC, frame format, operations
- 802.11 management
- 802.11 security
- 802.11 power control
- 802.11 QoS

WLAN Security Requirements

- Authentication: only allow authorized stations to associate with and use the AP
- Confidentiality: hide the contents of traffic from unauthorized parties
- Integrity: make sure traffic contents is not modified while in transit

Security in 802.11b

- WEP: Wired Equivalent Privacy
 - Achieve privacy similar to that on LAN through encryption
 - Intended to provide both privacy and integrity
 - RC4 and CRC32
 - Has known vulnerabilities
- WPA: Wi-Fi Protected Access
 - Larger, dynamically changed keys
- 802.1x: port-based authentication for LANs
 - Port-based authentication for LANs
- 802.11i (WPA2)
 - Builds on WPA
 - Uses AES for encryption

WLAN Security Exploits

- Insertion attacks
 - Unauthorized Clients or AP
- Client-to-Client Attacks
 - DOS - duplicate MAC or IP addresses
 - Can also be used to get free service on “secured” APs
- Interception and unauthorized monitoring
 - Packet Analysis by “sniffing” – listening to all traffic
- Jamming – denial of service
 - Cordless phones, baby monitors, leaky microwave oven, etc.

WLAN Security Exploits

- Brute Force Attacks Against AP Passwords
 - Dictionary Attacks Against SSID
- Encryption Attacks
 - Exploit known weaknesses of WEP
- Misconfigurations
 - APs ship in an unsecured configuration
 - Many people use APs with default configuration
- MAC Filtering

 - Each client identified by its 802.11 NIC Mac Address
 - Each AP can be programmed with the set of MAC addresses it accepts
 - Combine this filtering with the AP’s SSID
 - Very simple solution
 - Some overhead to maintain list of MAC addresses
 - But it is possible to forge MAC addresses …
 - Unauthorized client can “borrow” the MAC address of an authenticated client
 - Built in firewall will discard unexpected packets
Wired Equivalent Privacy (WEP)

- Employs RC4 to Encrypt/Decrypt data
 - RC4 is a stream cipher based on a symmetric algorithm
 - 40 bit encryption key is supplied by the user
 - 24 bit initialization vector (IV) is supplied in the header
 - 64 bit string is seed for PRNG to generate a "key sequence"
- 40 and 64 bit WEP are the same thing
- ICV (integrity check value) is computed for plaintext (CRC-32)
- ICV is appended to plaintext to create data string
- Key Sequence is XORed to data string to create ciphertext
- Ciphertext and IV are sent to receiver
- 128-bit WEP encryption uses a 104+24 bit key

WEP-Based Security Discussion

- WEP has known vulnerabilities
 - Key can be cracked with a couple of hours of computing
 - IV transmitted in the clear
 - No protocol for encryption key distribution
 - Clever optimizations can reduce time to minutes
 - All data then becomes vulnerable to interception
 - WEP typically uses a single shared key for all stations
 - Can makes changes without even decrypting!
- 128-bit WEP encryption is recommended

WEP Authentication

- Access request by client
- Challenge text sent to client by AP
- Challenge text encoded by client using shared secret then sent to AP
- If challenge text encoded properly, AP allows access; else access is denied

Port-based Authentication

- 802.1x is the IEEE standard for port-based authentication
- Users get a username/password to access the access point
- Was originally defined for switches but extended to APs
- Can be used to bootstrap other security mechanisms
 - Effectively creating a session

Wi-Fi Protected Access (WPA)

- Introduced by Wi-Fi Alliance as an interim solution after WEP flaws were published
 - Uses a different Message Integrity Check
 - Encryption still based on RC4, but uses 176 bit key (48 bit IV)
 - Keys are changed periodically
 - Also frame counter in MIC to prevent replay attacks.
- Can be used with 802.1x authentication (optional)
 - It generates a long WPA key that is randomly generated, uniquely assigned and frequently changed.
 - Attacks are still possible since people sometimes use short, poorly random WPA keys that can be cracked
- 802.11i is a “permanent” security fix
 - Replaces RC4 by the more secure Advanced Encryption Standard (AES) block encryption
 - Better key management and data integrity
 - Uses 802.1x for authentication.

Wireless Security

- Security is not just about authentication and encryption
- Must also consider business and deployment issues
 - AAA: Authentication, Authorization, and Accounting
 - Supporting users at different levels
Authentication in WLAN Hotspots

- Upon association with the AP, only authentication traffic can pass through, as defined by IEEE 802.1x
- The protocol used to transport authentication traffic is the Extensible Authentication Protocol (EAP - RFC3748)

Dual SSID Approach

- Broadcasted SSID:
 - VLAN1: Public
 - VLAN2: Management
 - VLAN3: User Traffic
- Hidden SSID:
 - IP pool A
 - 10.0.4.X
 - DHCP server
 - 802.1x enabled AP
 - User traffic
 - Authentication traffic
 - Billing interface
 - Mobile-eapsim
 - Internet
 - Public Service
 - Operator Services
 - IP
 - Radius
 - Home Agent
 - CDRs (charging data)

Best Practices for WiFi Security

- Use WEP
 - But change default key and change WEP key frequently
 - Better than no security plus some possible legal benefits
 - APs support WAP today
- Change the default configuration of your AP:
 - Change default passwords on APs
 - Don’t name your AP by brand name
 - Don’t name your AP by model #
 - Change default SSID
- Use MAC filtering if available
- Use a VPN
 - Must assume that wireless segment is untrusted
 - Provides end-to-end encryption – is what you want!

Wardriving

- The act of locating and possibly exploiting to a wireless network while driving around a city
- You need a vehicle, a laptop, a wireless PC card and some kind of antenna
- People can intercept your wireless signal when the signal exceeds your building
 - http://www.wardriving.com
- Is this legal??