18-345: Introduction to Telecommunication Networks
Lecture 23: Availability
Peter Steenkiste
Spring 2013
www.cs.cmu.edu/~prs/nets-ece

With slides from: Debabrata Dash, Nick Feamster, Vyas Sekar, and others

Our “Narrow” Focus

- Yes:
 – Creating a “secure channel” for communication (Part I)
 – Protecting network resources and limiting connectivity (Part II)

- No:
 – Preventing software vulnerabilities & malware, or “social engineering”.

Security Vulnerabilities

- At every layer in the protocol stack!

- Network-layer attacks
 – IP-level vulnerabilities
 – Routing attacks

- Transport-layer attacks
 – TCP vulnerabilities

- Application-layer attacks

IP-level vulnerabilities

- IP addresses are provided by the source
 – Spoofing attacks

- Using IP address for authentication
 – e.g., login with .rhosts

- Some “features” that have been exploited
 – Fragmentation
 – Broadcast for traffic amplification
Security Flaws in IP

- The IP addresses are filled in by the originating host
 - Address spoofing
- Using source address for authentication
 - r-utilities (rlogin, rsh, rhosts etc.)

![Diagram showing IP addresses and spoofing](image)

- Can A claim it is B to the server S?
 - ARP Spoofing
- Can C claim it is B to the server S?
 - Source Spoofing

ICMP Attacks

- No authentication
- ICMP redirect message
 - Can cause the host to switch gateways
 - Benefit of doing this?
 - Man in the middle attack, sniffing
- ICMP destination unreachable
 - Can cause the host to drop connection
- ICMP echo request/reply
- Many more...

Routing attacks

- Divert traffic to malicious nodes
 - Black-hole
 - Eavesdropping
- How to implement routing attacks?
 - Distance-Vector:
 - Link-state:
- BGP vulnerabilities
Routing attacks

- Divert traffic to malicious nodes
 - Black-hole
 - Eavesdropping

- How to implement routing attacks?
 - Distance-Vector: Announce low-cost routes
 - Link-state: Dropping links from topology

- BGP vulnerabilities
 - Prefix-hijacking
 - Path alteration

TCP-level attacks

- SYN-Floods
 - Implementations create state at servers before connection is fully established

- Session hijack
 - Pretend to be a trusted host
 - Sequence number guessing

- Session resets
 - Close a legitimate connection

TCP Layer Attacks

- TCP SYN Flooding
 - Exploit state allocated at server after initial SYN packet
 - Send a SYN and don’t reply with ACK
 - Server will wait for 511 seconds for ACK
 - Finite queue size for incomplete connections (1024)
 - Once the queue is full it doesn’t accept requests

Session Hijack

First send a legitimate SYN to server

Server

Malicious (M)

Trusted (T)
Session Hijack

TCP Layer Attacks

- TCP Session Poisoning
 - Send RST packet
 - Will tear down connection
 - Do you have to guess the exact sequence number?
 - Anywhere in window is fine
 - For 64k window it takes 64k packets to reset
 - About 15 seconds for a T1

Where do the problems come from?

- Protocol-level vulnerabilities
 - Implicit trust assumptions in design

- Implementation vulnerabilities
 - Both on routers and end-hosts

- Incomplete specifications
 - Often left to the creativity of the programmers

Outline – Part II

- Security Vulnerabilities

- Denial of Service

- Worms

- Countermeasures: Firewalls/IDS
Denial of Service

Make a service unusable/unavailable for legitimate users:

- Disrupt service by taking down hosts
 - E.g., ping-of-death
- Consume host-level resources
 - E.g., SYN-floods
- Consume network resources
 - E.g., UDP/ICMP floods

Reflector Attack

- Attacker
- Agent
- Reflector
- Reflector
- Reflector
- Reflector
- Reflector
- Reflector
- Victim

Unsolicited traffic at victim from legitimate hosts

Distributed DoS

- Attacker
- Handler
- Agent
- Agent
- Agent
- Agent
- Victim

Distributed DoS

- Handlers are usually high volume servers
 - Easy to hide the attack packets
- Agents are usually home users with DSL/Cable
 - Already infected and the agent installed
- Very difficult to track down the attacker
 - Multiple levels of indirection!
- Aside: How to distinguish DDos from flash crowd?
Outline – Part II

• Security, Vulnerabilities
• Denial of Service
• Worms
• Countermeasures: Firewalls/IDS

Worm Overview

• Self-propagate through network

• Typical Steps in worm propagation
 – Probe host for vulnerable software
 – Exploit the vulnerability (e.g., buffer overflow)
 • Attacker gains privileges of the vulnerable program
 – Launch copy on compromised host

• Spread at exponential rate
 – 10M hosts in < 5 minutes
 – Hard to deal with using manual intervention

Scanning Techniques

• Random
• Local subnet
• Routing Worm
• Hitlist
• Topological

Random Scanning

• 32-bit randomly generated IP address
 – E.g., Slammer and Code Red I
 – What about IPv6?

• Hits black-holed IP space frequently
 – Only 28.6% of IP space is allocated
 – Detect worms by monitoring unused addresses
 • Honeypots/Honeynet
Subnet Scanning

- Generate last 1, 2, or 3 bytes of IP address randomly
- Code Red II and Blaster
- Some scans must be completely random to infect whole internet

Some proposals for countermeasures

- Better software safeguards
 - Static analysis and array bounds checking (lint/e-fence)
 - Safe versions of library calls
 - gets(buf) → fgets(buf, size, ...)
 - sprintf(buf, ...) → snprintf(buf, size, ...)
- Host-diversity
 - Avoid same exploit on multiple machines
- Network-level: IP address space randomization
- Host-level solutions
 - E.g., Memory randomization, Stack guard
- Rate-limiting: Contain the rate of spread
- Content-based filtering: signatures in packet payloads

Outline – Part II

- Security, Vulnerabilities
- Denial of Service
- Worms
- Countermeasures: Firewalls/IDS

Countermeasure Overview

- High level basic approaches
 - Prevention
 - Detection
 - Resilience
- Requirements
 - Security: soundness / completeness (false positive / negative
 - Overhead
 - Usability
Design questions ..

- Why is it so easy to send unwanted traffic?
 - Worm, DDoS, virus, spam, phishing etc
- Where to place functionality for stopping unwanted traffic?
 - Edge vs. Core
 - Routers vs. Middleboxes
- Redesign Internet architecture to detect and prevent unwanted traffic?

Firewalls

- Block/filter/modify traffic at network-level
 - Limit access to the network
 - Installed at perimeter of the network
- Why network-level?
 - Vulnerabilities on many hosts in network
 - Users don’t keep systems up to date
 - Lots of patches to keep track of
 - Zero-day exploits

Firewalls (contd…)

- Firewall inspects traffic through it
- Allows traffic specified in the policy
- Drops everything else
- Two Types
 - Packet Filters, Proxies

Packet Filters

- Selectively passes packets from one network interface to another
- Usually done within a router between external and internal network
- What/How to filter?
 - Packet Header Fields
 - IP source and destination addresses
 - Application port numbers
 - ICMP message types/ Protocol options etc.
 - Packet contents (payloads)
Packet Filters: Possible Actions

- Allow the packet to go through
- Drop the packet (Notify Sender/Drop Silently)
- Alter the packet (NAT?)
- Log information about the packet

Some examples

- Block all packets from outside except for SMTP servers
- Block all traffic to/from a list of domains
- Ingress filtering
 - Drop pkt from outside with addresses inside the network
- Egress filtering
 - Drop pkt from inside with addresses outside the network

Typical Firewall Configuration

- Internal hosts can access a Demilitarized Zone (DMZ) and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only
- Advantages?
 - If a service gets compromised in DMZ it cannot affect internal hosts

Firewall implementation

- Stateless packet filtering firewall
- Rule → (Condition, Action)
- Rules are processed in top-down order
 - If a condition satisfied – action is taken
Sample Firewall Rule

Allow SSH from external hosts to internal hosts

How is SSH identified?
- SYN
- SYN/ACK
- ACK

Packet Filters

- Advantages
 - Transparent to application/user
 - Simple packet filters can be efficient

- Disadvantages
 - Usually fail open
 - Very hard to configure the rules
 - May only have coarse-grained information?
 - Does port 22 always mean SSH?
 - Who is the user accessing the SSH?

Default Firewall Rules

- Egress Filtering
 - Outbound traffic from external address → Drop
 - Benefits?

- Ingress Filtering
 - Inbound Traffic from internal address → Drop
 - Benefits?

- Default Deny
 - Why?

Alternatives

- Stateful packet filters
 - Keep the connection states
 - Easier to specify rules
 - Problems?
 - State explosion
 - State for UDP/ICMP?

- Proxy Firewalls
 - Two connections instead of one
 - Either at transport level
 - SOCKS proxy
 - Or at application level
 - HTTP proxy
Proxy Firewall

- Data Available
 - Application level information
 - User information
- Advantages?
 - Better policy enforcement
 - Better logging
 - Fail closed
- Disadvantages?
 - Doesn’t perform as well
 - One proxy for each application
 - Client modification

Intrusion Detection Systems

- Firewalls allow traffic only to legitimate hosts and services
- Traffic to the legitimate hosts/services can have attacks
- Solution?
 - Intrusion Detection Systems
 - Monitor data and behavior
 - Report when identify attacks

Classes of IDS

- What type of analysis?
 - Signature-based
 - Anomaly-based
- Where is it operating?
 - Network-based
 - Host-based

Signature-based IDS

- Characteristics
 - Uses known pattern matching to signify attack
- Advantages?
 - Widely available
 - Fairly fast
 - Easy to implement
 - Easy to update
- Disadvantages?
 - Cannot detect attacks for which it has no signature
Anomaly-based IDS

- Characteristics
 - Uses statistical model or machine learning engine to characterize normal usage behaviors
 - Recognizes departures from normal as potential intrusions
- Advantages?
 - Can detect attempts to exploit new and unforeseen vulnerabilities
 - Can recognize authorized usage that falls outside the normal pattern
- Disadvantages?
 - Generally slower, more resource intensive compared to signature-based IDS
 - Greater complexity, difficult to configure
 - Higher percentages of false alerts

Network-based IDS

- Characteristics
 - NIDS examine raw packets in the network passively and triggers alerts
- Advantages?
 - Easy deployment
 - Unobtrusive
 - Difficult to evade if done at low level of network operation
- Disadvantages?
 - Fail Open
 - Different hosts process packets differently
 - NIDS needs to create traffic seen at the end host
 - Need to have the complete network topology and complete host behavior

Host-based IDS

- Characteristics
 - Runs on single host
 - Can analyze audit-trails, logs, integrity of files and directories, etc.
- Advantages
 - More accurate than NIDS
 - Less volume of traffic so less overhead
- Disadvantages
 - Deployment is expensive
 - What happens when host get compromised?

Summary – Part II

- Security vulnerabilities are real!
 - Protocol or implementation or bad specs
 - Poor programming practices
 - At all layers in protocol stack
- DoS/DDoS
 - Resource utilization attacks
- Worm/Malware
 - Exploit vulnerable services
 - Exponential spread
- Countermeasures: Firewall/IDS