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I
nverse problems are an old topic in mathematics and are
currently so widely found in engineering that it is difficult
to make a full list of their applications. In particular, inverse
problems appear very often in image processing. There is a
fundamental reason for this: electronic sensors acquire

properties of the “reality” that are not the same as our natural
sensors, the eyes. This fundamental reason even possesses a
philosophical side, as Inmanuel Kant noted: “Things that we see
are not by themselves what we see” [1]. This assertion is indeed
the source of most inverse problems that appear in image pro-
cessing. Physics give some insights to this point. A sensor
involved in an imaging process can normally be modeled by an
equation containing an integral of a function or the composi-
tion of several functions. For instance, an optical charge coupled
devise (CCD) integrates light on a finite interval of the electro-
magnetic spectrum and gives as a result an electrical signal; this
is further converted into a digital signal, the so-called gray level.
The integral nature of the basic image acquisition floods the
field of image processing with integral processes. In short, we
could say the following: We do not see the objects by themselves
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because we see their integrals. This is the rea-
son why inverse problems appear so often in
image processing. When information about
the “objects by themselves” is to be extracted
from an image, the integral process should
be inversed. This inversion, when working
with a computer, is intimately related to lin-
ear algebra and matrix analysis.

The inversion of an integral or resolu-
tion of an integral equation can be diffi-
cult to solve; properly speaking, it can be

an ill-posed problem. Let us try to explain why. An integral
can be understood as an addition of elements in a continu-
ous space. Thus, an integral is a process that loses informa-
tion about the functions involved in the infinite addition.
Functions are, in fact, reduced to a single number or several
numbers which represent a more complex reality. Let us
introduce here a very basic example: if we ask someone
“How much is 1 + 2?” he should answer 3; but if we ask the
inverse question “Give me some numbers that add up to 3,”
the answer is not straightforward since infinite solutions
exist. The mathematical study of this kind of problem start-
ed more than a century ago, especially with the definition of
a well-posed problem [2] and continues to be an active field
of research.

The aim of this survey is to show how linear inverse prob-
lems in imaging can be solved using basic techniques. For this,
we provide a classification of the solutions into several families
and we illustrate each sort of solution by examples found in cur-
rent state-of-the-art imaging systems. Our classification imposes
some order on the complexity that a nonexpert can find in the
abundant literature. Moreover, it emphasizes the practical reso-
lution of the problems. 

The concepts used in this survey are illustrated
by actual examples of inverse linear problems in
imaging. We choose some of them for their histori-
cal importance, such as image restoration, and
others for their critical issue in state-of-the-art
imaging systems. For instance, the resolution of
the so-called spectral reflectance reconstruc-
tion allows the acquisition of high-fidelity
color digital images. Among others, the
famous painting by Leonardo da Vinci, the
“Mona Lisa” (Museum of Louvre, Paris,
France), was scanned as part of the con-
servation restoration innovation systems
for image capture and digital archiving
to enhance training, education, and
lifelong learning (CRISATEL)
European project [3] in order to per-
form spectral reconstruction.
Another inverse problem that illus-
trates this survey is associated with
parallel magnetic resonance
imaging (MRI), a rapid acquisi-

tion technique for medical imaging which is pres-
ent in current MRI medical equipment. With
these chosen examples, we will try to show the
broad scope of applications where linear
inverse problems are found.

This survey is organized into two main
parts. We first describe theoretical aspects
of linear inverse problems and introduce
basic concepts of linear inverse prob-
lems. We propose a new classification
of methods for the resolution of lin-
ear inverse problems. This classi-
fication leads to the second part
of the survey, which explores a
set of examples illustrating
the implementations of the
various methods: image
restoration, spectral reflectance
reconstruction, and parallel MRI.

LINEAR INVERSE PROBLEMS: CONCEPTS
Most inverse problems in imaging result from integral processes
involved in the acquisition of the image. This can be modeled by
the following equation:

m(x) =
∫
�

φ(x, λ)o (λ)d λ + n(x), (1)

where
■ m(x) is the information obtained from the imaging
process, the measurements,
■ φ(x, λ) is the kernel of the integral equation (this func-
tion has a different physical meaning depending on the

application),
■ o(λ) is the property of the object we are
indirectly measuring,

■ n(x) is the noise, unfortunately always
present in actual inverse problems, and

■ � is the space where λ is integrated.

The integral in (1) becomes an integral equa-
tion when we want to recover o(λ), the object

property. This sort of equation is a Fredholm inte-
gral equation of the first kind. Theoretically, they

are known to be intimately related with ill-posed
problems; see [4] for a mathematical treatment and

[5] for some classic solutions.

DISCRETIZATION OF A FREDHOLM
INTEGRAL EQUATION

Integral equations defined in continuous spaces must be
discretized if we want to solve them numerically. In this

process, the kernel φ(x, λ) in (1) becomes a matrix � in a
linear system. In general, φ(x, λ) can be physically meas-

ured, indirectly estimated, mathematically modeled, or
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simply not known. In any case, the resulting linear system takes
the following form:

m = � o + n, (2)

where lowercase bold indicates a finite discrete vector. In (2),
vector o is a discretization of the property of the object and m is
a vector representing the function m(x). Note that the dis-
cretization of m(x) in the vector m is forced by the nature of the
acquisition system; this will be clearly stated in the examples.
Vector n represents the additive random noise.

ILL-POSED PROBLEM
The notion of a well-posed problem goes back to a famous
paper by Jacques Hadamard published in 1902 [2]. A well-posed
problem in the sense of Hadamard is a problem that fulfills the
following three conditions:

1) The solution exists.
2) The solution is unique.
3) The solution depends continuously on the problem data.
If any of these conditions is not respected, the problem

becomes ill-posed. Note that both the first and second condi-
tions deal with the feasibility of the problem, and the last con-
dition relates to the possible implementation of a stable
numerical procedure for its resolution. The solution of a
problem is always based on some data, typically obtained from
experimentation. If the solution does not depend “smoothly”
on the problem data, small variations on the data can create
huge variations on the solutions, resulting in strong instabili-
ty which is not acceptable.

REGULARIZATION
When solving ill-posed problems, the concept of regularization
immediately appears. Regularization is used to well-pose a prob-
lem that is ill-posed. Once the problem is well-posed, we can
solve it. Thus, all three conditions of Hadamard should be
respected by the proposed solution. When working with linear
algebra conditions, 1) and 2) are easily fulfilled by a pseudo-
inverse [6]. However, it is in general more difficult to deal with
the stability of the solution. Historically the so-called Tikhonov
regularization is one of the oldest and most well-known tech-
niques for stabilization, see [7] for broadest references. Also, the
Wiener filter is a classical approach for ill-posed problems on
signal and image processing [8].

RESOLUTION OF LINEAR INVERSE PROBLEMS: 
A CLASSIFICATION
Linear inverse problems have been solved using literally hun-
dreds of methods and variations of these methods. When first
confronted with a new inverse problem, the variety of solu-
tions is indeed huge. This point is central for an engineer aim-
ing to solve a new problem. Which is the best solution in a
particular case? Why? This is not clearly stated when navigat-
ing in technical results of sometimes sophisticated mathemat-
ics. We decided to base this survey on a classification of the

methods. We have divided the solutions of linear inverse prob-
lems into four families: Fourier transform (FT) based, direct
inversion, indirect inversion, and interpolation. They are pre-
sented in this section, and will be illustrated later using actual
inverse problems in imaging.

FT SOLUTIONS
The FT was one of the most used mathematical tools in the
twentieth century. Several introductions to image processing
make extensive use of this concept, and a lot of methods based
on the FT exist. In part, this is due to FT methods being very
pedagogical and easy to understand. Moreover, its computer
implementation, the fast Fourier transform (FFT), is efficient
and quick. It is then not surprising that this technique has been
intensively used in imaging. However, much care should be
taken as the FT applied to inverse problems is always dependent
on specific properties of the problem and it is then not general.
We will further explain this dependency later with an example:
the restoration of degraded images.

DIRECT RECONSTRUCTION PROBLEM
Direct reconstruction appears in the case where operator � in
(2) is known. Then, the problem consists of finding vector o
when m is given. This should be reached by inversing matrix
�, in the absence of noise: o = inv(�) m. From this apparently
simple linear system we remark that the matrix � is in general
not a square matrix; consequently, the system itself is over- or
underdetermined by definition. This means that either the sys-
tem has no solution or it has many. Clearly, this does not
respect conditions 1) or 2) of the Hadamard definition: the
problem is ill-posed. The third condition is not as straightfor-
ward to see as the others, but modern numerical linear algebra
presents enough resources for the analysis of the stability of a
matrix. If the matrix is singular, its inverse will be unstable.
The condition number, the rank of the matrix, or the Picard
condition, among others, are good analytical tools to deter-
mine if we are dealing with an ill-posed problem; see [9] for a
valuable reference on this subject.

CLASSICAL SOLUTIONS
Matrix � not being a square matrix, its inverse does not exist;
but it can be replaced by the so-called pseudo-inverse, [6], [10].
The pseudo-inverse corresponds to the solution of the following
minimization problem:

min
o

‖m − �o‖2. (3)

The solution is obtained from the normal equations by simply
writing the derivatives of (3) equal to zero. At this point, care
should be taken as the name pseudo-inverse is used for two dif-
ferent matrices depending on the number K of variables and on
the number N of unknowns. When K > N , the problem is
overdetermined and the pseudo-inverse is defined by

�−
over = (�t�)−1�t. (4)
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When K < N, the problem is underdetermined and the pseudo-
inverse is defined by 

�−
under = �t(��t)−1. (5)

This dual definition of the pseudo-inverse can be a source of
confusion in practical problems. Indeed, (4) and (5) seem to be
equivalent but transposed, while corresponding to a different
underlying problem. Further in this survey we emphasize this
point by choosing actual examples which are under- and overde-
termined. A pseudo-inverse respects Hadamard's conditions 1)
and 2), but the stability of the solution is not guaranteed.
Consequently, other techniques imposing stability were histori-
cally developed. In order to describe several classical techniques
in the same mathematical framework, we introduce the follow-
ing minimization problem:

min
o

J(o) : J(o) = (m − �o)t N(m − �o) + λ2‖L o‖2, (6)

where N is a matrix that modifies the criterion
(m − �o)t(m − �o) minimized in (3), λ2‖L o‖2 is an added
regularization term reinforcing minimal o norm solutions, L is
a positive definite matrix, and λ2 a parameter that controls the
influence of the regularization term. A closed form of the mini-
mum of (6) can be found by simply differentiating J(o) and set-
ting its result to the zero vector:

∂ J(o)

∂o
= −2�t N(m − �o) + 2λ2Lt Lo = 0. (7)

Solving (7) for o yields to the optimal least squares operator in
the overdetermined case:

�−
over = (�t N� + λ2Lt L)−1�t N . (8)

Its dual underdetermined operator is given by:
�−

under = N�t(�N�t + λ2LtL)−1 . In the rest of this section,
three methods that are often used in solving linear inverse prob-
lems are presented. We choose to introduce them in a common
mathematical framework; in fact, all are special cases of (8) pre-
sented above.

MODIFYING THE MINIMIZED NORM
Equation (6) is often simplified not using the regularization
term λ2‖L o‖2. This leads to

�−
N−over = (�t N�)−1�tN , (9)

where N modifies the norm of a classical least squares problem;
this approach is often called weighted least squares; see chapter 5
of [11]. Its dual underdetermined operator is given by
�−

N−under = N�t(�N�t)−1 . In fact, the case where N is the
identity matrix minimizes the Euclidean norm; in this case (6)
becomes (3). This matrix can take different forms depending on
the application; for instance, it can be a smoothing operator. A

very popular choice is the inverse of a covariance matrix which is
estimated from the noise affecting the measurements. Then, the
operator defined in (9) becomes a special case of the Wiener filter.

WIENER FILTER
Most of the time, inverse operators are unstable due to the effect of
noise. Knowledge of the model of noise or at least its covariance
matrix is very useful as it can be integrated in the solution in order
to stabilize it. When both covariance matrices over vectors m and
o are known, the inversion operator takes the following form:

�−
Wiener-over =

(
� t�−1

m � + �−1
o

)−1
�t�−1

m , (10)

where �o is the covariance matrix of the object characteristic
we want to estimate and �m is the covariance matrix of the
measurements. Its dual underdetermined operator is given by
�−

Wiener-under = �−1
o �t(��−1

o �t + �−1
m )−1 . The relationship

between (10) and (8) is clear when stating N = �−1
m and

λ2LtL = �−1
o . This solution is referred to as Wiener estimation;

it requires the second-order statistics with respect to the signal
and noise, in addition to the system matrix �.

TIKHONOV REGULARIZATION
Another classic technique to regularize this kind of problem is
Tikhonov regularization. It consists of using the regularization
term already presented in (6). In its classical form, matrix L is
omitted and the norm is not modified by N, leading to the fol-
lowing minimization problem:

min
o

‖m−� o‖2+λ2 ‖o‖2 , (11)

and to the following solution:

�−
Tikhonov−over = (�t� + λ2I)−1�t , (12)

where I is the identity matrix. Its dual underdetermined opera-
tor is given by �−

Tikhonov−under = �t(��t + λ2I)−1 . This tech-
nique is widely used when treating the inversion of �. Care
must be taken as it depends on the parameter λ; the choice of
this parameter highly influences the estimated o. If we look for a
quick solution, this parameter can be manually adjusted.
However, when it must be automatically chosen, λ is either cal-
culated from specific characteristics of the problem, optimized
by established techniques such as cross-validation [12], or opti-
mized by the L-curve [9].

SINGULAR VALUE DECOMPOSITION
The computational inversion of a nonsquare and probably sin-
gular matrix is a central aspect when solving a linear inverse
problem. To do so, a singular value decomposition (SVD) of the
matrix is often used [13]:

� = U �V t =
n∑

i =1

ui σi v t
i , (13)
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where U = (u1, u2,... ,un) and V = (v1, v2,... ,vn) are complex
matrices with orthonormal columns and � = diagonal
(σ1, σ2,... ,σn) is a real matrix containing nonnegative diagonal
elements called singular values which appear in nonincreasing
order such that σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

A stable inverse � of can be calculated by 

�−
f-SVD = V�−1

f Ut =
n∑

i =1
vi

fi
σi

ut
i ,

where the filter factors f1, f2, . . . , fn are used to control the sin-
gular values in the inversion. Depending on the choice of the fil-
ter factors, different regularization techniques can be
implemented; for instance, choosing fi = σ 2

i /(σ 2
i + λ2) leads to

Tikhonov regularization. The use of an SVD when analyzing and
solving a linear inverse problem is common practice and it has
been extensively studied [9]. However, in some cases the use of an
SVD is not appropriate, i.e., when working with large matrices as
the time required calculating the SVD becomes huge compared to
inversion methods based on iterative algorithms. These iterative
algorithms do not look for an exact solution, but solve either a
minimization problem or the associated normal equations.

DIFFICULTIES CHARACTERIZING THE DIRECT PROBLEM
All methods based on the direct inversion paradigm make a very
strong hypothesis: the direct problem is characterized. This
involves not only accurately knowing � but also having a priori
information about the noise process disturbing (1). Knowing
matrix � is not a trivial assumption. Its physical meaning varies
from application to application and sometimes can be hard to
obtain. In general, this matrix is either experimentally measured
or modeled using physical information known about a particular
problem. When � is measured, complex and time-expending
experimental procedures are generally involved. When � is
modeled, physical theoretical insight is usually required.
Sometimes both procedures are mixed as some problems pres-
ent great difficulty.

Noise is normally taken into account when performing a
direct inversion. Its characterization typically requires a model
that can be estimated by means of statistical analysis over a series
of images or signals. Basic assumptions of this model should be
carefully considered. Most of the time noise is assumed as
Gaussian. In some applications, this is justified by the physics of
the problem, but care should be taken as this assumption is some-
times driven by a “simplicity” consideration which is not neces-
sarily appropriate. When possible, it is advised to measure noise
histograms in order to have an idea of the underlying probability
density function (PDF) of the noise affecting (1).

The difficulties characterizing the direct problem are bet-
ter understood when illustrated by actual problems. Later in
this survey, we describe these difficulties explicitly in a set of
examples.

PROBABILISTIC POINT OF VIEW
A general theory about inverse problems is obtained when using
a probabilistic point of view, see [14]. Inverse problems are seen

as probabilistic inference problems where lack of information
makes the inference impossible. Therefore, some kind of a priori
knowledge must be used to compensate. In this section, we
introduce a simplification of the general theory which applies to
nonlinear problems and is outside the scope of this survey. In
the simplified framework, (2) is considered in the absence of
perturbations caused by noise: m = � o. Now, vectors m and o
are considered random variables. Consequently, their realiza-
tions are driven by PDFs fO(o) and fM(m) defined over two
linear spaces: the model space, O, and data space, M. A priori
information on the model parameters is represented by fO(o).
In this context, by use of a Bayesian approach the prior PDF
over the model space, fO(o), is transformed into the posterior
PDF over the data space, fM(m). Let us illustrate this approach
more precisely, defining the PDFs in the model and data space
as multivariate Gaussian distributions:

■ The a priori information indicates that the (unknown)
model o is a sample of a known Gaussian PDF over the
model space O whose mean is oprior and whose covariance
matrix is �o:

fO(o) = co e− 1
2 (o−oprior)

t�−1
o (o−oprior) , (14)

where co is a constant of normalization not detailed here.
■ Measurements of the observable parameters m are
assumed to be represented by a Gaussian PDF centered at
mobs and with covariance matrix �m

fM(m) = cm e− 1
2 (m−mobs)

t�−1
m (m−mobs) , (15)

where cm is a constant.
From these two above PDFs (14) and (15), knowing that the

relationship between m and o is linear, the Bayes theorem is
applied to find the posterior distribution. We recall that in a
Bayesian approach the product of the PDF of m conditional to o
[called likelihood, in this case fM(� o)] and the PDF of o
[ fO(o), called prior] makes, after division by a normalizing con-
stant, the following so-called posterior PDF:

fposterior(o) = fM(� o) fO(o)∫
O

fM(� o′) fO(o′) do′ . (16)

The posterior distribution is also Gaussian and takes the follow-
ing form:

fposterior(o) =
cp e− 1

2 (� o−mobs)
t�−1

m (� o−mobs) − 1
2 ( o−oprior)

t�−1
o ( o−oprior),

(17)

where cp is a constant. The mean value, m̃, of this posterior dis-
tribution (17) can be calculated [14], leading to

m̃ =
(
�t�−1

m � + �−1
o

)−1 (
�t�−1

m mobs + �−1
o oprior

)
. (18)
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Equation (18) is in fact a general form of the Wiener operator pre-
sented in (10) where oprior is included. Tikhonov regularization can
be understood in this context as a way of estimating matrix �−1

o .
From (18), it is easy to observe that the techniques presented

in this survey are justified only when all uncertainties (mod-
elization uncertainties, observational uncertainties, uncertain-
ties in the a priori model) are Gaussian. Care should be taken
applying these techniques to cases where this assumption is vio-
lated. Finally, this section intends to provide a glimpse of the
probabilistic interpretation of linear inverse problems. The
interested reader should be aware that the treatment of nonlin-
ear problems and non-Gaussian PDFs necessitates the use of
more complex mathematics than the ones presented above.

INDIRECT RECONSTRUCTION PROBLEM
The inverse operator can be constructed without characterizing
the direct problem. This can be surprising for a beginner, but it
is indeed possible. Let us take another look at the discrete equa-
tion (2), where the noise term is removed for simplicity

m = �o. (19)

If � is unknown, the only available information concerns the
other elements of the equation. In some problems, corresponding
pairs of vectors (mi, oi), for i = 1, . . . , P, can be obtained. These
corresponding pairs (mi, oi) depend strongly on the application;
their number, precision, or nature of acquisition can be signifi-
cantly different. This approach can also be called calibration.

Let’s now insert in the columns of an N × P matrix O all the
ois and in the columns of a K × P matrix M all their correspon-
ding mis. The construction of O and M allows us to rewrite a set
of P equations as (19) in a single matrix expression:

O = �−
Indirect M, (20)

where �−
Indirect is a N × K matrix representing the inversion of

the unknown matrix �. A straightforward solution of this linear
system would be

�−
Indirect = O M−1, (21)

if M is a full rank square matrix, but usually P � K. Moreover,
the stability of the solution would not be assured because of the
presence of noise in O and M. The problem is ill-posed in the
Hadamard sense. However, M can be inversed using a pseudo-
inverse as follows:

�−
Indirect = O Mt (M Mt)−1. (22)

Tikhonov regularization can also be used in (22), as already
explained in a preceding section.

MULTIVARIATE LINEAR REGRESSION
If we take a closer look at (22), we observe that this equation
represents a multivariate linear regression model, a well-

known expression that can be found in any multivariate statis-
tics textbook; see [15] for reference. Multivariate linear regres-
sion is the generalization to multiple response variables of the
familiar linear regression model; see [16] for an introduction.
In fact, the least-squares normal equations of the multivariate
linear regression are Q M Mt = O Mt, where M is the matrix
containing observational data in its columns and O is a matrix
containing the observations of the dependant variable. A basic
algebra manipulation gives Q, the so-called least squares esti-
mator of the linear model parameters: Q = O Mt (M Mt)−1 ;
obviously this equation is equivalent to equation (22) and
Q = �−

Indirect . Indirect reconstruction techniques establish a
multivariate linear regression. Thus, the use of regression is
mathematically well founded for the resolution of integral
equations; indeed, a linear underlying relationship between m
and o exists. Finally, the use of regression and Tikhonov regu-
larization is common practice in statistics and leads to the so-
called Ride regression; see, for instance, [12].

RECONSTRUCTION AS INTERPOLATION
There exists another paradigm for solving an integral equation
of an imaging problem. This is a particular case, but it appears
in some imaging applications. If we consider an integral equa-
tion (1) as a sampling process, the kernel φ would become a
sampling function, typically a delta Dirac, and o(λ) would be the
signal to be sampled. This is conceptually different from the par-
adigms presented previously. The reconstruction of the original
image becomes then intimately related to the well-known sam-
pling theory.

When dealing with a linear inverse problem as a sampling
problem, we should be aware that a strong assumption is being
made about the kernel of the integral equation. Whether the
functions composing the kernel can be considered as approxi-
mations of sampling functions is completely dependent on the
specific application. 

EXAMPLE: IMAGE RESTORATION
Restoration of degraded images is a classical ill-posed linear
inverse problem in image processing, see [17] or [18]. A degrad-
ed image can have different causes, for instance defocusing,
motion, noise, or parasite signals. The degradation is normally
considered invariant of the position within the image and it is
then modeled by a convolution integral:

g(x, y) =
∫ ∫

image(α, β) d(x − α, y − β) dα dβ + n(x, y),

(23)

where g is the degraded image, x and y index the pixels of the
degraded image, d is the cause of the degradation and α and β
index the original image, and n represents the noise.
Convolution is important in image processing and is also the
base for filtering and enhancement of digital images. Note that
(23) is a particular case of (1). The fact that the integral in (23)
is defined in a bidimensional space does not change any funda-
mental aspect of our discussion.
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In image filtering, enhancement, or reconstruction,
knowing operator � means that the cause of the degradation
of the image is a priori known and characterized. This can be
studied in the case where the imaging acquisition tool pre-
senting the default is available for experimentation. In gener-
al, when not present or simply when the degradation is of
unknown origin, estimating � can be difficult. The convolu-
tion in (23) is a linear operation normally represented by the
operator ∗ as follows:

g = image ∗d + n . (24)

This operation becomes a multiplication on the Fourier domain.
Consequently, when looking for the nondegraded image from a
degraded one (either for filtering, enhancement, or restoration pur-
poses), a deconvolution becomes a division in the Fourier domain:

I = G/D , (25)

where I, G, and D are, respectively, the Fourier transforms of
the image to be restored, the degraded image, and the degrada-
tion process. For an actual solution, in (25), noise must be
taken into account and zero division must be avoided. This is
done by the Wiener filter in its Fourier domain formulation [8],
which is one of the oldest solutions to this problem, and con-
tinues to be the base of numerous modern image restoration
systems. Details about this subject can be found in standard
textbooks; see chapter 5 of [17] for an introduction. Care
should be taken using Fourier transform techniques as they
depend on properties of the specific inverse problem. Well-
known established solutions exist based on the fact that a
deconvolution is a division in the Fourier domain. However,
when confronted with a new inverse problem that is not a con-
volution, the application of this kind of approach can simply
not be possible.

EXAMPLE: MULTISPECTRAL IMAGING AND 
SPECTRAL REFLECTANCE RECONSTRUCTION
Conventional color digital cameras producing three-band
images appear to be limited when high-fidelity color repro-
duction has to be performed. While high-fidelity sound sys-
tems are commercially available devices, high-fidelity color
digital cameras are only found, at the moment, in research
laboratories. A way of obtaining color high fidelity is to use a
camera with more than three bands, leading to so-called mul-
tispectral color imaging.

The main components involved in an image acquisition
process are depicted in Figure 1. We denote the spectral radi-
ance of the illuminant by lR(λ) , the spectral reflectance of the
object surface imaged in a pixel by r(λ), the spectral transmit-
tance of the optical systems in front of the detector array by
t(λ), the spectral transmittance of the kth optical color filter
by fk (λ) and the spectral sensitivity of the CCD array by α(λ).
Note that only one optical color filter is represented in Figure
1. In a multispectral system, a set of filters is often set up in a

barrel which rotates to automatically change filters between
acquisitions. There also exist systems that do not need any
mechanical displacement in order to change the filter trans-
mittance. For instance, liquid crystal tunable filters (LCTFs)
provide this capability. They are basically an accumulation of
different layers, each layer containing linear parallel polariz-
ers sandwiching a liquid crystal retarder element; see [19] for
an example of its use.

Supposing a linear optoelectronic transfer function of the
acquisition system, the camera response ck for an image pixel is
then equal to

ck =
∫
�

lR(λ)r(λ) t(λ) fk(λ) α(λ) dλ + nk

=
∫
�

φk(λ) r(λ) dλ + nk , (26)

where φk(λ) = lR(λ) t(λ) fk(λ) α(λ) denotes the spectral sen-
sitivity of the kth channel, nk is the additive noise, and � is the
range of the spectrum where the camera is sensible. The
assumption of system linearity comes from the fact that the
CCD sensor is inherently a linear device. However, for real
acquisition systems, this assumption may not hold—for exam-
ple, due to electronic amplification nonlinearities or stray light
in the camera [20], [21]. Stray light may be strongly reduced by
appropriate black anodized walls inside the camera. Electronic
nonlinearities may be corrected by an appropriate calibration of
the amplifiers.

The aim of spectral reflectance reconstruction is to obtain a
reflectance curve for each pixel of the image. This is illustrated
in Figure 2, which contains a color image of “Saint Jacques le
mineur,” a painting by Georges de la Tour (Musée Toulouse
Lautrec, Albi, France) scanned by a 10-filter multispectral cam-
era [3]. We show below for this painting image two examples of
reconstructed reflectances for two different pixels.

DISCRETIZATION OF THE INTEGRAL EQUATION
By uniformly sampling the spectra at N equal wavelength inter-
vals, we can rewrite (26) as a scalar product in matrix notation:

ck = φ t
k r + nk , (27)

where r = [r(λ1) r(λ2). . . r(λN)]t and φk = [φk(λ1)φk(λ2) . . .

φk(λN)]t are vectors containing the sampled spectral reflectance
function and the sampled spectral sensitivity of the k th channel
of the acquisition system, respectively. The vector
cK=[c1 c2 . . . cK]t representing the responses of all K channels
may then be described using matrix notation as

cK = � r + n, (28)

where n = [n1 n2 . . . nK]t and � is the K-line, N-column matrix
defined as �=[φk(λn)], where φk(λn) is the spectral sensitivity
of the k th channel at the nth sampled wavelength.
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SOLUTIONS BASED ON DIRECT INVERSION

DIFFICULTIES CHARACTERIZING THE DIRECT PROBLEM
In spectral reflectance reconstruction, knowing � means that
a physical characterization of the acquisition system has been
performed. This characterization requires at least the meas-
urement of the CCD sensitivity, filter transmittances, and
transmittance of the optics. This is illustrated graphically in
Figure 3. This characterization involves the realization of
physical experiments in which, typically, a monochromator is
used for measuring the CCD sensitivity and a spectroradiome-
trer is used for measuring the spectral transmittances of the
filters and of the other optical systems of the camera. For a
CCD, the noise model can be considered Gaussian; this
assumption is justified by the physics of the problem. To study
the noise, a series of images is acquired with the camera lens

being occluded with a lens cap or with the whole equipment
placed in a dark room.

NORM MINIMIZATION
In [22], the following operator:

�−
Hardeberg = RRt�t(� RRt�t)−1 , (29)

is proposed to regularize a pseudo-inverse. The matrix R contains
a selected set of sampled spectral reflectances which represent well
the spectral properties of the objects to be imaged. This approach
assumes that any reflectance can be a linear combination of these
representative reflectances. For an oil painting digitization, a set of
64 pure pigments provided by the National Gallery in London [21]
is used. When comparing Hardeberg’s operator with the dual
underdetermined operator �−

N−under = N�t(�N�t)
−1

[see (9)],

[FIG1] Schematic view of the image acquisition process. The camera response depends on the spectral radiance of the light source, the
spectral reflectance of the objects in the scene, the spectral transmittance of the camera lens (not illustrated in the equation), the
spectral transmittance of the color filter, and the spectral sensitivity of the sensor.
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we observe immediately that this operator minimizes a norm
defined by the matrix N = RRt, see (6).

SMOOTHING INVERSE
From our knowledge, this technique was introduced by Mancill
and Pratt, see [23] or Chapter 16 of [18] where the technique is
applied to the similar problem of spectral radiance estimation,
where the radiance lR (λ) instead of the reflectance r(λ) is esti-
mated in (26). The approach used by [24] is directly inspired
from both the above cited references. This technique is basical-
ly the application of the generalization of the pseudo-inverse to
the non-Euclidian distance. This is seen in the dual underdeter-
mined of (9), where N = N� is a N × N matrix such that the
built operator �−

N�-under minimizes the average squared second
differences � = ∑

�i , where � = [(r(λi+1) − r(λi))−
(r(λi) − r(λi−1))]2. Note that �i is a measure of the curvature
of the reflectance functions. Unfortunately, N� is a singular
matrix and, consequently, it cannot be inverted. The method
uses then the following nonsingular matrix:

N′
� = N� + ε I, (30)

where I is the identity matrix and ε is a small positive constant
(ε � 1). The method for determining this parameter is normal-

ly not specified. It is, in general, fixed a priori or optimized man-
ually. Automatic optimization is, in general, not needed. Please
note the similarities of this stabilization method with the
Tikhonov regularization (12).

The smoothing inverse method normally obtains much bet-
ter results than a normal pseudo-inverse. In fact, the concept of
smoothing is natural when considering linear spectral recon-
struction. In Figure 4, we show two measured spectral curves
(red) along with their reconstructed counterparts using a simple
pseudo-inverse (green) and a smoothing inverse (blue), the
smoothing matrix being N′

�, where ε is 0.01. Both curves are
from the GretagMacbeth digital camera (DC) color chart, a well-
known test chart for color calibration control. We clearly see
that the pseudo-inverse reconstructed curves oscillate around
its true value. Smoothing in this case appears well-adapted as
part of the reconstruction technique.

WIENER FILTER
As we have already seen, Wiener estimation requires second-
order statistics, in this case the covariance matrices of the spec-
tral reflectance curves �r and of the camera responses �c. We
must estimate the covariance matrices accurately. This entails
some experimental work: the covariance matrix �r is usually
estimated from the reflectances of a set of color patches and the

[FIG2] (a) Spectral reconstruction of the reflectance curves on two pixels of the multispectral image. The spectral reflectance curves
have been estimated using an indirect reconstruction method. (b) Painting “Saint Jacques le mineur” by Georges de la Tour 
(Musée Toulouse Lautrec, Albi, France).
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covariance matrix �c is estimated by measuring the noise prop-
erties of the CCD camera actually used. This leads to

�−
Wiener = �−1

r �t
(
��−1

r �t + �−1
c

)−1
, (31)

which is a direct application of the dual underdetermined of
expression (10). In the early work of [23], they propose some
approximations of the covariance matrices. They model �r as a
first-order Markov process covariance matrix of the form
�r = σ 2

r Mρ , where ρ, 0 ≤ ρ ≤ 1 is the adjacent element corre-
lation factor, Mρdescribes the structure of the Markov process,
and σ 2

r represents the variance of the reflectances. A white noise
model is chosen with a covariance matrix �c = σ 2

n I, where σ 2
n

is the noise variance and I is the identity matrix. This example
illustrates how assumptions about the structure of the covari-
ance matrices can be made when not enough physical informa-
tion can be obtained from the imaging system. The less
information we have, the more
assumptions we make. In fact, the
choice of this noise model is not ade-
quately justified when applied to spec-
tral reconstruction. When carefully
studying noise sources in multispectral
images, this noise model can be much
more complex. See, for instance, [25]
where a much more complete
approach for modeling �c is used.

SOLUTIONS BASED
ON INDIRECT INVERSION
Indirect reconstruction is possible when
spectral reflectance curves of a set of P
color patches are known and an image
of these patches is acquired by a multi-
spectral camera. From this data, a set of
corresponding pairs (cp, rp) for
p = 1, . . ., P, is obtained, where cp is a
vector of dimension K containing the
camera responses and rp is a vector of
dimension N representing the spectral
reflectance of the p th patch.
Corresponding pairs (cp, rp) are easy to
obtain; professional calibrated color
charts such as the GretagMacbeth DC
are sold with the measurements of the
reflectances of their patches. In addi-
tion, if a spectroradiometer is available,
performing the measure is a fairly sim-
ple experiment. Obtaining the camera
responses from the known spectral
curves of the color chart is just a matter
of taking a multispectral image. In
Figure 5, we illustrate the indirect
reconstruction approach in the case of
spectral reflectance reconstruction.

A straightforward solution is given by (22), when applied to
this case is

�−
Indirect = R Ct(C Ct)−1, (32)

where R is a N × P matrix with columns containing all the rps
and C is a K × P matrix with columns containing their corre-
sponding cps.

PRINCIPAL COMPONENT ANALYSIS AND REGRESSION
This method introduced by Burns [26] is basically a multivariate
regression, but instead of looking for the operator that matches
matrices R and C, we look for an operator that matches another
matrix A and C. This matrix A is calculated from R by principal
component analysis (PCA), which is a statistical technique for
data dimensionality reduction [11]. SVD described in (13) is
intimately related to PCA. In fact, A is a reduced diagonal matrix

[FIG3] For spectral reflectance reconstruction, direct inversion requires the characterization
of CCD sensitivity, filters transmittances, optics transmittance, illuminant radiance, and the
characterization of the noise.
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[FIG4] Spectral curves from the Macbeth DC color chart (red) along with their reconstruction
using the pseudo-inverse (green) and the smoothing inverse (blue): (a) sample number 4 of
the Macbeth DC and (b) sample number 164.
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containing the set of the most representative PCA coefficients. A
relationship between representative PCA coefficients and chan-
nel responses C can be established by the operator A Ct(C Ct)−1.
This example is interesting as it is clearly a variation of a multi-
variate regression. Let’s note that another operation is needed to
obtain the sampled spectral reflectance curve from the set of
estimated PCA coefficients. This is obtained by a matrix multi-
plication, a projection from the orthogonal space defined by the
PCA to the original reflectance space. If we call this matrix Ep,
we can redefine the operator to estimate directly the spectral
reflectance curves as

�−
pinvPCA = Ep A Ct (C Ct)−1. (33)

If we compare (32) with this operator, we see that matrix R is
simply replaced by Ep A. In fact, the concept of “representative
PCA coefficients” is very similar to the use of a Truncated SVD in
the context of regression; see [9].

NONAVERAGED PSEUDO-INVERSE
This technique is based on (32). It uses a conceptually easy and
interesting way of introducing noise information in the sys-
tem. It was first introduced in [27]. The key idea is simple, but
the experimental detail must be explained in order to under-
stand how this method works. Determining R and C implies
classically the following two-step experiment based on a chart
containing color patches:

1)  Measure the spectral reflectance of all the patches of the
color chart using a spectroradiometer. Each sampled spectral
curve is stored in a column of the matrix R.
2)  Acquire a multispectral image of the color chart. A win-
dow is superposed onto each patch and its mean value calcu-
lated per patch and per channel. The mean values of a patch
form a vector of camera responses that is stored in a column
of the matrix C. This column has the same index as the corre-

sponding spectral reflectance column
in matrix R.

The technique is based on taking
advantage of the information acquired
in the second step above. Instead of cal-
culating a mean value for the windows
superposed onto the patches, this tech-
nique uses all the values contained in
the window to build a large C matrix.
Of course, matrix R is expanded to have
a corresponding spectral curve column
for every column of C. This makes the
matrices very large. For instance, a typ-
ical color chart can contain 200 patch-
es. When using the classical mean
value approach, if ten filters are used
and the spectral curves have 40 sam-
ples, matrix R has dimensions 40 ×
200 while matrix C is 10 × 200. When
using this new approach and a small

window of 10 × 10 pixels, the sizes of the matrices are multi-
plied by 100. Matrix C becomes 10 × 20,000 and matrix R is 40
× 20,000. We can easily imagine that when the window increas-
es its dimensions the size of the system formed by R and C can
become huge. This implies much more computation time.

The advantage of this method is that it somehow automati-
cally captures the acquisition noise model. We can consider
every pixel of a window as a realization of a random noise
process. Then, using all the values in the analysis windows as
samples to solve the spectral reconstruction problem means
that we implicitly take noise into account. In fact, this approach
is interesting because noise is not explicitly modeled, no
assumption about its distribution being required.

SOLUTIONS BASED ON INTERPOLATION
A multispectral system can be considered as a tool that sam-
ples spectral reflectance curves. Instead of using delta Dirac
functions for the sampling as in the classical framework, the
spectral transmittance functions fk(λ) of the K filters are
considered to be the sampling functions. This approach just
requires the camera response itself, c. The methods based on
this paradigm interpolate the camera responses acquired by
a multispectral camera by using a smooth curve. The
smoothness properties of the interpolating curve introduce a
natural constraint which regularizes the solutions. However,
there are two underlying problems to take into account
before representing the camera responses in the same space
as spectral curves:

■ Positioning the camera response samples in the spec-
tral range can be a challenge. For instance, in the case of
Gaussian-shape filter the camera responses can be posi-
tioned at the center of the filter. But, real filters are rarely
Gaussian-shaped. In general, it is admitted that if a filter
is narrow, positioning the camera responses can be done
with low uncertainty. Unfortunately, when wide filters are
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[FIG5] Indirect inversion requires a set of color patches and the acquisition of a multispectral
image. From there, corresponding pairs of spectral reflectance curves and their camera
responses are extracted. These pairs are later organized as matrices that will be used to
calculate the reconstruction operator.
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used this uncertainty increases with the width of the fil-
ter. This is the reason why interpolation methods should
be used only with multispectral cameras using narrow
band-pass filters.
■ The camera must be radiometricaly calibrated. This means
that camera responses must be normalized, i.e., to belong to
the [0,1] interval for all the camera channels. In high-end
applications, this normalization implies the use of a radio-
metric standard white patch. This reference patch is imaged
for normalization as part of a
calibration procedure.
Most practical applications of

interpolation to spectral recon-
struction are used in cases where
the CCD is cooled and Gaussian-
like filters are available, see [28].
Such methods are reported not to
be well-adapted to filters having
more complex wide-band responses, suffering from quite severe
aliasing errors [24], [26].

Cubic splines have been applied in this context by [29]. They
are well-adapted to the representation and reconstruction of
spectral reflectance curves because they generate smooth
curves, C 2 continuity being assured. A technique called modi-
fied discrete sine transform (MDST) was also introduced by [29].
It is based upon Fourier interpolation.

SIMULATION
When an imaging process is modeled by an integral equation, its
simulation is straightforward: in a discrete system, it becomes a
series of vector and matrix products. This can be used to better
understand the nature of the problem and to perform some analy-
sis as a quantitative study on the performance of different elements
integrating the studied imaging process. For instance, in multi-
spectral imaging, the shape of the filters defining the spectral
bands of the camera can be optimized for better final image quality
[30]. Another interesting example is the simulation of the color of
a scene under various illuminants. When the spectral reflectance
reconstruction problem is solved an image containing a
reflectance curve in each of its pixels is obtained. As the reflectance
r(λ) is now known in (26), the illuminant lR(λ) can be introduced
to simulate a color image. In fact, a color camera is defined by
three known color matching functions φk(λ), K = 1, .. , 3, corre-
sponding to a color space such as sRGB [31].

Figure 6 shows results of the illuminant simulation for an
image of the head of La Baigneuse, a painting by Renoir (Musée
de l’Orangerie, Paris, France). This simulation was part of the
European project CRISATEL where a multispectral acquisition
system for paintings was developed [32]. This kind of simula-
tion has numerous applications in art preservation. A curator
would find a tool implementing illuminant simulation very
useful when deciding the appropriate light sources for an art
exhibition with the original or, for instance, when having to
produce a high-quality printed reproduction of a painting
under specific lighting conditions. It is also possible to simulate

the aging of a painting by introducing the spectral transmit-
tance of an old varnish in (26).

EXAMPLE: PARALLEL MRI IMAGING
Linear inverse problems also appear in systems of a nonopti-
cal nature, such as an MRI. Parallel MRI is a rapid acquisition
technique considered as one of the modern revolutions in the
field of MRI. All current medical MRI equipment offer the
ability to use this technique.

For readers not familiar with
this imaging modality, it should be
understood that a medical MRI
acquisition system can be con-
ceived as a machine which physi-
cally performs an FT of the
properties of human tissue. The
acquisition process in a voxel of the
produced images is indeed an FT of

a tissue contrast function, which depends on the hydrogen spins
present in this voxel. This process is mathematically represented by

k-spacel
(
k
) =

∫
V

sl (r) t(r) e−ik.rdr + nl
(
k
)

, (34)

where r and k are position vectors in the image domain and in the
frequency domain, respectively, and k.r represents their inner prod-
uct. Here t(r) is the tissue contrast function at position r, sl (r) is
the sensitivity map of the lth receiver coil used to receive the MRI
signal, l = 1, .. , and k-spacel (k) represents a measurement per-
formed by the MRI system in the so-called k-space. Finally V is
called volume of interest, the volume taken into consideration for
the imaging process. Classical MRI systems are equipped with a sin-
gle reception coil (L = 1) whose unique sensitivity map is as spa-
tially flat as possible. This enables taking the term sl (r) out of (34),
and then the reconstruction of an image becomes (apart from arti-
facts correction) an inverse FT of the k-space.

Parallel MRI systems are equipped with multiple coil
receivers. They were first introduced for image signal-to-
noise ratio (SNR) improvement [33]. Subsequently, they have
been used to accelerate image acquisition in [34] and [35].
When used for rapid acquisition, the k-spaces of each coil are
incompletely acquired. Each coil observes the same MRI sig-
nal, but this signal is modulated by the coil individual sensi-
tivity profile sl (r).

In the rest of this section, we consider the parallel MRI
reconstruction problem from a linear algebra point of view [36].
The problem can be defined as follows: Different coils having dif-
ferent sensitivity profiles, this introduces a spatial encoding
effect; how can this effect be used to compensate the aliasing
generated by the incomplete acquisitions?

DISCRETIZATION OF THE INTEGRAL EQUATION
Strictly speaking, (34) is a system of L integral equations with a
common unknown t(r). In the general case, this equation can
be discretized by considering the following matrix:

THE INVERSION OF AN INTEGRAL
OR RESOLUTION OF AN INTEGRAL
EQUATION CAN BE DIFFICULT TO

SOLVE; PROPERLY SPEAKING, IT CAN
BE AN ILL-POSED PROBLEM.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 15:41 from IEEE Xplore.  Restrictions apply.



E(l,κ),ρ = sl (r) e−ikκ rρ , (35)

where (l, κ), ρ appear as subindexes emphasizing that matrix E
has dimensions (L × K ) × N , L is the number of coils
(l = 1, .. , L) , K is the number of samples in the k-space
(κ = 1, .. , K), and N is the number of voxels in the image

(ρ = 1, .. , N). The construction of matrix E, the encoding
matrix, leads to the following discretization of (34):

k-space = E t , (36)

where k-space is a vector containing (L × K) k-space samples
from all coils and t is a N vector containing all the voxels of the
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[FIG6] Illuminant simulation to produce an sRGB color image of the head of “La Baigneuse,” painted by Renoir (Musée de l’Orangerie,
Paris, France). Using spectral reflectance curves reconstructed at each pixel, we simulate the appearance of the painting under different
illuminations by simply changing the spectral radiance lR(λ). Note that blue being a prominent element in this painting, the visual
appearance is seriously altered by the change of illuminant.

1

400 450 500 550 600 650 700 750

0.8

0.6

0.4

0.2

0

R
ef

le
ct

an
ce

Wavelength [nm]
Illuminant A

(Tungsten Lamp)

1

400 450 500 550 600 650 700 750

0.8

0.6

0.4

0.2

0

R
ef

le
ct

an
ce

Wavelength [nm]

1

400 450 500 550 600 650 700 750

0.8

0.6

0.4

0.2

0

R
ef

le
ct

an
ce

Wavelength [nm]
Illuminant d65

(Daylight at 6,500 K)

Illuminant d50
(Daylight at 5,000 K, Cloudy))

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 20, 2008 at 15:41 from IEEE Xplore.  Restrictions apply.



image to be reconstructed. This equation is equivalent to the
general expression in (19), but the size of matrix E is huge. The
methods presented in this survey are not directly applicable to
such a matrix; iterative algorithms should be used. In [37], an
iterative solution of (36) is presented; however, it is computa-
tionally intense. This kind of solution is found in current prob-
lems, for instance, when the k-space is sampled following a
spiral trajectory [38].

More insights into this problem can be made by taking a
close look at the structure of the encoding matrix. We just
emphasize the fact that the terms e−ikκ rρ in (35) can be
considered in a separate matrix that is the FT operator F̃.
Then (36) becomes

k-space = F̃ S t , (37)

where S is the sensitivity matrix representing the sensitivity
profiles of the coils. From this new equation, it is obvious that
an inverse FT, F̃−1, can be applied to the vector k-space to
obtain i = S t, where i is a vector containing all the voxels of the
image. This transforms the reconstruction problem to the so-
called image domain. However, the
reconstruction can be performed directly
in the k-space domain: a method that
historically exemplifies this approach is
SMASH [39].

SOLUTIONS BASED
ON DIRECT INVERSION 
In fact, (37) is rarely solved in the gener-
al case but in a simplified framework.
The most common simplification is to
consider the k-space as a regular or
Cartesian grid. This casts the full recon-
struction problem into a series of small
reconstruction problems, and then they
are solved separately. We show in Figure
7 an example where Cartesian k-spaces
have been subsampled by a factor of two,
and where four coils have been used for
acquisition. The corresponding pattern
in the image domain is shown on the
left. The four acquired k-spaces have
been inverse Fourier transformed. The
resulting images are shown on the right
side of the figure. They present strong
aliasing. From this data the left-hand
side image should be reconstructed.

DIFFICULTIES CHARACTERIZING 
THE DIRECT PROBLEM
In parallel MRI, characterizing the
direct problem means that the sensi-
tivity profiles or maps of the coils have
been measured. Unfortunately, direct

measurement of the sensitivity is not possible. Thus, the
maps must be estimated indirectly from patient images. We
show in Figure 8 four images of a water phantom: as this
phantom is homogenous, t(r) in (34) becomes constant and
the four images can be considered as a physical approxima-
tion of the coil sensitivity maps sl (r). Estimates of the actual
sensitivity maps for each coil are generally obtained from
patient data by using nonsubsampled images:
ŝl(r) = il (r)/ iuniform (r), where il is the full image from coil l
and iuniform is the full image with uniform sensitivity profile,
obtained either using a traditional homogeneous sensitivity
coil or the sum of squares of the individual coil images.
Maps computed this way only cover areas where intensity
t(r) and sensitivity sl (r) are high. Interpolation-extrapola-
tion methods must be applied to expand the sensitivity
maps. For example, local polynomial fitting is used in [40] to
reduce noise in the maps and provide local extrapolation.
However, generating a sensitivity map remains a nontrivial
task; see [41] for a description of an automatic method for
their calculation. Moreover, it can be a problem in images
presenting large areas with very low signal. That is the case,

[FIG7] Parallel MRI inverse problem. The k-spaces have been subsampled by a factor
of two in order to accelerate the acquisition. The MRI system was equipped with four
coils. Both orange left-hand side voxels superpose on the four red voxels belonging
to the acquired images.

Acquisition

Reconstruction

[FIG8] A water phantom is imaged with four coils (center) in order to obtain a rapid
approximation of the sensitivity maps ŝl (r), l = 1, . . . , 4 (left and right sides). These images
come from a real experiment on a General Electric 1.5 MRI using a four-coil TORSO system.

Water
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for example, in pulmonary MRI where the air inside the
lungs produces no signal [42].

SENSITIVITY INVERSION 
One of the most well-known reconstruction techniques in paral-
lel MRI is SENSE (sensitivity encoding) [40]. This reconstruc-
tion technique works on the image domain and corresponds to
the simplified framework presented in Figure 7. In this figure,
we can see that the four red pixels on the acquired images
match somehow the two orange pixels on the reconstructed
image. In fact, this match corresponds to a linear noisy mix of
signals coming from known equidistant positions in an ideal
nonaliased image.

We note R the number of voxels superimposed in the origi-
nal image (or reduction factor) and L the number of coils used
in the acquisition system. In the core of a reconstruction sys-
tem, a vector r of complex numbers containing R reconstructed
image intensities is generated from another complex vector f
containing L measurements. These measurements correspond
to the same voxel position in the aliased images acquired by the
coils. This is performed by means of an R × L complex unfold-
ing matrix, �−

U . Mathematically, the relationship is expressed as

r = �−
U f . (38)

Equation (38) is indeed the definition of any linear reconstruc-
tion method working in the image domain. The manner of
building matrix �−

U is what differs among various methods. For
SENSE [40], this matrix is

�−
SENSE = (SH�−1S)−1SH�−1 , (39)

where S is the sensitivity matrix and � is the receiver noise
covariance matrix. The superscript H indicates a Hermitian
transposition as the MRI signal is a complex signal. Equation
(39) corresponds to a pseudo-inverse modified by a covariance
matrix, a special case of a Wiener filter shown in (9). Note that
the problem is overdetermined as the number R of voxels to be
reconstructed is smaller than the number L of coils. This is easi-
ly seen in Figure 7 where the two orange voxels (R = 2) have to
be reconstructed from the four red voxels (L = 4); in this case,
the reconstruction matrix �−

U has dimensions of 2 × 4.
Efforts have been made to increase the SNR of the images

reconstructed by SENSE. Regularization has been proposed for
the first time by [43], and we can see state-of-the-art results in
[44] where Tikhonov regularization is used and the parameter λ
is optimized by the use of the L-curve [9].

SOLUTIONS BASED ON INDIRECT INVERSION
Indirect reconstruction applied to parallel MRI has one
strong advantage: sensitivity maps of the reception coils do
not need to be estimated. In parallel MRI, existing indirect
reconstruction techniques work in the k-space and not in the
image domain. This means that a regression operator is con-
structed using elements of the Fourier domain. This kind of

technique is also called autocalibrated because it is based on
the acquisition of some extra information, the auto calibra-
tion signal (ACS) lines; they correspond to lines from each
coil located at the low-frequency coordinates of the k-space.
The most popular among these methods is currently GRAPPA
(generalized autocalibrating partially parallel acquisitions)
[45]. In fact, GRAPPA seeks to form estimates of the full k-
space of each coil, which are combined to obtain the recon-
structed image. Each coil’s full k-space is estimated by the
use of a regression between neighboring k-space points,
matrix M, and ACS lines, matrix OACS:

OACS = �−
GRAPPA M . (40)

Equation (40) is equivalent to (20). The exact format of
matrices OACS and M can be deduced from [45]. Note that in
[45] the regression is not shown in matrix form but explicitly.

CONCLUSIONS
Classical techniques for solving linear inverse problems have
been presented. Our aim was to show how these classical
techniques are applied in current state-of-the-art imaging
systems. Moreover, we have provided a classification of the
techniques into four families: FT-based, direct reconstruc-
tion, indirect reconstruction, and interpolation. We hope that
this classification will guide the curious reader into a disci-
pline with a rich bibliography and sometimes sophisticated
mathematics. In this survey, we skipped complicated meth-
ods to solve inverse problems. Through our examples, we
have tried to emphasize the large variety of applications of
linear inverse problems in imaging. Two main examples have
been examined more deeply in this survey. We hope they have
helped the reader to understand the application of the gener-
al techniques in two interesting contexts: multispectral
imaging and magnetic resonance imaging.
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