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tatistical signal processing covers an area where phys- 
ics and mathematics meet and interact to solve a wide 
range of problems. Its origins may be traced back to the 

1943 classified RCA report by North, republished in [l], the 
1946 classic paper [Z] by Van Vleck and Middleton, and the 
pioneering work by Wiener [3] .  In particular, the classical 
methods of statistical signal processing are founded on three 
basic assumptions: linearity, stationarity, and second-order 
statistics with particular emphasis on Gaussianity. These 
assumptions are invoked for the sake of mathematical tracta- 
bility. Yet most, if not all, the physical signals that we have 
to deal with in real-life applications are generated by dynamic 
processes that are simultaneously nonlinear, nonstationary, 
and non-Gaussian. The end result of designing a signal-proc- 
essing system along traditional lines is a suboptimal solution. 
One way in which the performance of the system can be 
improved is to consider the use of neural networks in combi- 
nation with other suitable techniques (e.g., time-frequency 
analysis), depending on the task at hand. 

Interest in neural networks, or to be more precise, artificial 
neural networks, has always been motivated by the fact that 
the human brain functions in a manner entirely different from 
the conventional digital computer. The human brain is a 
gigantic, and yet highly efficient, information-processing 
machine that encompasses a wide variety of complex signal 
processing operations. To appreciate the enormous scale of 
these operations, we need only look at our visual and auditory 
systems and be amazed at the “seamless” nature of the way 
in which different forms of information gathered by our eyes 
and ears are individually processed and then finally fused 
together. 

Work on neural networks may be traced back to the 
pioneering paper [4] by McCulloch and Pitts in 1943, which 
was followed by Rosenblatt’s development of the perceptron 
[5] and Widrow’s development of the adaline [6] in the late 
1950s. After going through a period of dormancy (in an 
engineering context) in the 1970s, neural networks re- 
emerged in the 1980s with the publication of Hopfield’s 
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paper on recurrent networks [7] and the two-volume seminal 
book [8] by Rumelhart and McClelland on parallel distrib- 
uted processing (PDP). We may look back on the 1980s not 
only as the decade of re-emergence of neural networks but 
also as one of consolidation. 

Insofar as this article is concerned, the primary interest is 
in the use of neural networks as an engineering tool for signal 
processing applications. The aim of the article is three fold: 

Articulate a new philosophy in the approach to statistical 
signal processing using neural networks;, which (either by 
themselves or in combination with other suitable tech- 
niques) account for the practical realities of nonlinearity, 
nonstationarity, and non-Gaussianity 

Describe three case studies using real-life data, which 
clearly demonstrate the superiority of this new approach 
over the classical approaches to statistical signal process- 
ing 

Discuss mutual information as a criterion for designing 
unsupervised neural networks, thus moving away from the 
mean-square error criterion 

Rationale for Using Neural Networks 

Neural networks have a number of important properties that 
befit their use for signal processing applications. In particu- 
lar, we mention the following five properties: 

Neural networks are distributed nonlinear devices 
This property is a direct result of the fact that each processing 
unit (i.e., neuron) of a neural network has a built-in activation 
function (for example, in the form of a logistic function) that 
is nonlinear. Accordingly, neural networks have the inherent 
ability to model underlying nonlinearities contained in the 
physical mechanism responsible for generating the input 
data. 

A neural network consists of a massively parallel processor 
that has the potential to be fault tolerant 
For example, a multilayer perceptron, representing a popular 
structure for the implementation of a neural network, consists 
of a large number of neurons arranged in the form of layers, 
with each neuron in a particular layer connected to a large 
number of source nodestneurons in the previous layer. This 
form of global interconnectivity has the potential to be fault 
tolerant, in the sense that the performance is degraded grace- 
fully under adverse operating conditions. If a neuron or its 
synaptic links are damaged, the recall quality of a stored 
pattern is impaired, but owing to the highly distributed nature 
of the network, the damage has to be extensive before the 
performance is seriously degraded. Nevertheless, to be as- 
sured that the neural network is in fact fault tolerant, we may 
find it necessary to take proper measures in designing the 
algorithm used to do the training [8]. 

Neural networks have a natural ability to adapt their free 
parameters to statistical changes in the environment in which 
they operate. 
As a rule of thumb, we may say that the more we make a 
nonlinear system adaptive, the more robust the performance 
of that system is likely to be when it operates in a nonstation- 
ary environment, subject, of course, to the requirement that 
the system remains stable. (We ourselves are a living example 
of this rule.) However, for the full benefits of adaptivity to be 
realized, there has to be a successful resolution to the stabil- 
ity-plasticity dilemma. This means that the principal time 
constants of the system should be long enough to ignore 
spurious disturbances, and yet short enough to respond to 
meaningful changes in the environment. Ordinary adaptive 
filters also have the ability to adjust their parameters auto- 
matically in accordance with statistical variations of their 
environment [ 10,l I]; however, their adaptive signal process- 
ing capability is limited by their structural formulation as 
simple linear combiners. 

Neural networks provide a nonparametric approach for  the 
nonlinear estimation of data 
The nonlinear, feedforward multilayer class of neural net- 
works (encompassing multilayer perceptrons and radial ba- 
sis-function networks) learns about its environment in a 
supervised manner. (The design of multilayer perceptrons 
and radial-basis function networks is discussed in the book 
by Haykin [ 121, and the review papers by Lippmann [ 131 and 
Hush and Horne [ 141.) Specifically, these neural networks 
undergo a training session during which their free parameters 
(i.e., synaptic weights and biases) are adjusted in a systematic 
way so as to minimize a cost function. Typically, the cost 
function is defined on the basis of a mean square-error 
criterion, with the error signal itself being defined as the 
difference between a desired response and the actual output 
of the network produced in response to a corresponding input 
signal. The neural network learns from examples by con- 
structing an input-output mapping for the problem at hand, 
which brings to mind the notion of nonparametric statistical 
inference; see Table 1. The term “nonparametric” is used here 
in a statistical sense, meaning that no knowledge of the 
underlying probability distribution is required. 

In the traditional approach to mathematical statistics as 
taught in a statistics department, the issues of primary con- 
cern are two-fold: 

The use of mathematically tractable models, assuming the 
idealized conditions of linearity, wide-sense stadonarity, 
and Gaussianity, for the derivation of parameter estimators. 

Derivation of exact properties (e.g., mean and variance) of 
estimators for small sample-sizes; if the exact properties 
are not mathematically tractable, then one would consider 
the asymptotic properties of the estimators as the number 
of samples approaches infinity. 
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In contrast, neural network-based methods are attractive 
for practical applications by virtue of their ability to deal with 
nonlinearity, nonstationarity, and non-Gaussianity. More- 
over, they offer robustness with respect to parameter tuning 
and sample properties, which is important for a good setting 
of user-tunable parameters by non-expert users. It is not quite 
clear why, in this respect, neural networks appear to behave 
better than comparable statistical techniques such as projec- 
tion pursuit [27,28], splines [29], and multivariate adaptive 
regression splines (MARS) [30]. Projection pursuit is simi- 
lar and mathematically equivalent to the multilayer percep- 
tron in terms of representation. Splines are closely related to 
radial-basis function (RBF) networks. MARS may be viewed 
as a tree of neurons with each leaf of the tree consisting of a 
neuron; the neuron may itself be modeled as a piecewise 
linear polynomial or a cubic polynomial with the knot of the 
spline treated as a variable. 

A possible explanation for the superiority of neural net- 
works may be found in the differences in the way in which 
the respective optimization procedures are pursued [32]. In 
statistical methods, particularly those that use a greedy form 
of optimization with the basis functions tuned one at a time, 
it may be difficult or perhaps impossible to recover from any 
wrong decisions made in some early stages of the optimiza- 
tion process. In contrast, in a neural network the complete set 

of basis functions represented by the outputs of the hidden 
neurons are optimized simultaneously in an iterative fashion, 
hence the more robust behavior. 

In addition to robustness, there are other considerations to 
be taken into account, such as prediction accuracy in the 
context of dense samples or sparse samples, where “dense- 
ness” is measured with respect to the target function com- 
plexity (i.e., smoothness). Insofar as prediction accuracy is 
concerned, it can be said that there is no single method that 
provides a superior performance under all possible situations 
[31]. Evidence supporting this claim, using computer simu- 
lations on various statistical methods including neural net- 
works, is presented in [25]. 

Neural networks, operating in a supervised manner, are 
universal approximators 
Multilayer feedforward networks (i.e., multilayer percep- 
trons and radial-basis function networks) are universal ap- 
proximators, in the sense that they can approximate any 
continuous input-output mapping to any desired degree of 
approximation, given a sufficient number of hidden units 
[33-351. This property is also shared by classical methods 
based on the use of smooth functions such as algebraic or 
trigonometric polynomials. What is really important, there- 
fore, is the rate of convergence with which the unknown 

IEEE SIGNAL PROCESSING MAGAZINE MARCH 1996 26 



function is approximated for a prescribed set of basis func- 
tions. In classical approximation theory involving bounded 
norms of the derivatives of orders for some s > 0, the rate of 
convergence is O(n-2S’(2S+P)), where n is the degree of the 
polynomial, and p is the dimensionality of the input space. 
The dependence of the rate of convergence on p in the 
exponent is a manifestation of the curse of dimensionality. 
The implication here is that in a high-dimensional space (i.e., 
large p )  one can only approximate very smooth functions 
(i.e., large s) for a given number of samples (i.e., prescribed 
n). For the corresponding case of neural networks, Barron 
[36] has shown that it is possible to approximate any function 
satisfying a certain condition on its Fourier transform by a 
multilayer perceptron, with the rate of convergence being 
O( 1/ & ), where n is the number of sigmoid basis functions 
(i.e., hidden neurons). Even though this result has been 
(mis)interpreted as if the use of neural networks overcomes 
the curse of dimensionality (i.e., the rate of convergence does 
not depend on the dimensionality p of the input space), 
careful examination of the result shows that with increasing 
dimensionality p ,  the smoothness of the function being ap- 
proximated would have to be increased to ensure that the 
condition on the bounded norm of its Fourier transform is 
satisfied [37]. 

Principle of Empirical Risk Minimization 

In a real-life situation, we have to work with a finite sample 
size, irrespective of the statistical estimation procedure used. 
With the notable exception of Vapnik’ s pioneering work that 
remains largely unknown to the signal processing commu- 
nity, there exists no widely accepted theory for small-size 
nonparametric estimation. 

Vapnik’s work hinges on an important parameter called 
the Vapnik-Chervonenkis dimension, or simply the VC-di- 
mension [38]. In the context of pattern classification, the 
VC-dimension provides a measure of the capacity of the 
family of classification functions realizedl by a learning ma- 
chine. 

The VC-dimension plays a central role in the principle of 
empirical risk minimization, an inductive principle that does 
not require probability density estimation. This makes it 
perfectly suited to the underlying premise of neural networks. 
The basic idea of the method is to use a set of N identically 
and independently distributed (iid) training examples 
(xi ,di),(x2,d~),...,(x~,d~) to construct the empirical risk func- 
tional [39]: 

which does not depend on the unknown probability that 
pertains to the generation of the training examples. In this 
equation, Xi and di denote the input vector and the desired 
response vector for the ith training example, respectively, and 
w is the set of free pararneters (weights) selected by the 
learning machine (i.e., neural network). The function L(di; 
F(xi,w)) represents the loss or discrepancy between the de- 

sired response vector, di, corresponding to an input vector, 
Xi, and the actual response, F(xi,w), produced by the neural 
network. 

Let Wemp denote the parameter vector that minimizes 
Remp(W) over the parameter space. According to the principle 
of empirical risk minimization, the functional Remp(W) con- 
verges in probability to the minimum possible value of the 
actual risk functional R(w) as the size, N ,  of the training set 
is made infinitely large, provided that the empirical risk 
functional Remp(w) converges uniformly to the actual risk 
functional, R(w). The theory of uniform convergence of 
Remp(w) to R(w) includes bounds on the rate of convergence, 
which are, in turn, based on the VC-dimension. For a discus- 
sion of these issues, see [12,39,40]. 

Information Preservation Rule 

Neural networks may not be adequate to tackle all statistical 
signal processing applications by themselves. Rather, neural 
networks may have to be integrated with other related tech- 
niques in a principled way in order to capture the full infor- 
mation content of the input data and exploit the information 
in an efficient manner. A particular technique that lends itself 
to this approach is that of time-frequency (scale) analysis 
[41-421, by means of which a one-dimensional signal is 
transformed into a time-frequency (scale) image. (For exam- 
ple, as illustrative ways in which wavelets, a popular method 
for performing time-scale analysis, can be integrated with 
neural networks for different applications, see [43-5 11.) The 
useful feature of time-frequency transformation is that it 
displays the temporal localization of the signal’s spectral 
components in a more discernible fashion than would be the 
case directly from the signal or its spectrum. 

Whatever form of system integration is used, the design 
objective should be in accord with an information-theoretic 
rule of thumb that may be stated as follows: 

In designing a receiver, the available information per- 
taining to a signal-processing task (e.g., target detection or 
parameter estimation) should be preserved optimally (in a 
statistical sense) and used efficiently (in a computational 
sense), until the receiver is ready for final decision-making. 
(This rule is based on one of three lessons learned from 
information theory; see Viterbi [52].) 

In the sequel, we refer to this rule as the information 
preservation rule. To appreciate the practical significance of 
this rule, consider the case of remote sensing. In this kind of 
application, we typically find that the sensors (e.g., the an- 
tenna in a weather radar system and its electromagnetic 
accessories) represent a highly significant part of the capital 
investment involved in building the system. Most impor- 
tantly, it is unlikely that the cost of the sensors would go 
down. In direct contrast, signal-processing subsystems are 
becoming progressively cheaper, thanks to very-large-scale 
integration (VLSI) technology. This is all the more reason for 
adhering to the information preservation rule, thereby putting 
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environment 

Test the receiver performance 
with real-lofe data 

Train the machine with 
real-life data 

(b) 

. Two classes of statistical signal processing techniques. 

the sensors to their most cost-effective use. Neural networks 
have the potential to preserve information by virtue of their 
ability to learn a model of their environment through expo- 
sure to input-output examples that are representative of the 
environment. For the information preservation rule to be 
satisfied, however, the structural complexity of the neural 
network should closely match the underlying complexity of 
the input data. This raises the issue of network complexity 
that has attracted the attention of many researchers, building 
on statistical criteria such as Rissanen’s minimum-descrip- 
tion length (MDL) criterion and cross validation; see [ 18,261 
for a discussion of this important design issue. 

Successful design of a neural network rests not only on the 
right selection of a network structure but also the availability 
of a reliable training set, (i.e., a training set that is precise and 
relatively noise-free). If we recognize that, inespective of the 
design methodology, the statistical performance of a signal- 
processing system must be evaluated with real-life data prior 
to use in an operational setting, we may just as well start with 
the collection of a “labeled” dataset (i.e., ground truthed) that 
will be representative of the particular environment of inter- 
est. Part of the dataset is used to train the neural network, and 
the remaining part is subsequently used to test it. Unfortu- 
nately, the learning process is an ill-posed inverse problem 
for the following reasons [12]. First, the information content 
of the training data may not be sufficient to reconstruct the 
input-output mapping uniquely. Second, the unavoidable 
presence of noise or imprecision in the training data adds 

uncertainty to the reconstructed input-output mapping. To 
make the learning process well posed, some prior information 
(e.g., smoothness constraints) on the input-output mapping 
must be included in the formulation of the learning algorithm. 
This is achieved by adding aregularizing term (i.e., stabilizer) 
to the cost function used to derive the algorithm for training 
the neural network [12, 53, 541. 

To sum up, we may identify two different approaches to 
statistical signal processing, as indicated in Fig. 1. In the 
parametric approach depicted in Fig. la, we start with a 
statistical model of the underlying physical mechanism re- 
sponsible for generating the input data, and then use the 
model to design the receiver. The success of this approach 
depends on how closely the model describes the realities of 
the physical mechanism responsible for generating the data. 
In direct contrast, in the nonparametric approach depicted in 
Fig. lb, the information-processing machine provides not 
only a statistical model of the environment in which it oper- 
ates, but also the final receiver design. The success of this 
latter approach depends on how representative the training 
data are of the physical environment, and how adequate the 
size of the training data is. Neural networks, viewed in a 
statistical sense, belong to the approach described in Fig. lb. 

. 

Criteria for Acceptance of Neural Networks 

In assessing the engineering attributes of a “good” signal 
processor, we come upon two particular attributes: 

* Optimal preservation of the available information, and 
therefore optimality of performance in some statistical 
sense 

0 Robustness of performance with respect to small variations 
in environmental conditions 

Given these attributes, neural networks can gain acceptance 
as tools for solving statistical signal processing problems, in 
preference to traditional methods, if 

(i) using a neural network makes a significant difference 
in the statistical performance of a system for a real-world 
application, or can provide a significant reduction in the cost 
of implementation without compromising performance 

(ii) by virtue of its massively parallel and distributed 
structure, a neural network offers a more graceful degrada- 
tion of performance due to the unavoidable failure of network 
components than would be possible with other nonparametric 
methods 

(iii) the tuning of adjustable parameters in a neural net- 
work is a more straightforward task (and therefore easily 
accomplished by a nonexpert user) than would be the case 
with other nonparametric methods 
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(iv) through the use of a neural network, by itself or in 
combination with some other devices, we are able to solve 
difficult signal processing problems for which there are no 
viable solutions using standard methods 

A practical limitation of neural networks is that when 
working with real-life data, training for an application may 
take a long time; the length of training would naturally have 
to be viewed in the context of available computing resources. 
The relatively long time needed to train a neural network is 
largely due the computer architecture (serial in nature) in 
current use, which is ill suited to programming neural net- 
works. Special-purpose processors (e.g., the ANNA chip [55] 
and CNAPS [56]) are available today that can speed up the 
training process significantly for specific types of neural 
networks. In addition, the back-propagation algorithm 
(widely recognized as the workhorse for the design of neural 
networks) lends itself to parallelism. Indeed, many papers 
have been written on this issue; see [57] and the references 
listed herein. Through the use of parallelism, the training 
process of a multilayer perceptron required to tackle a large 
problem may be facilitated by using a large number of paral- 
lel processors and distributing the synaptic weights of the 
network over these processors. 

Another weakness is that it is often difficult to see how 
knowledge gained by the neural network about its environ- 
ment is actually represented inside the network. Some dis- 
play/graphical tools such as the Hinton diagram and the bond 
diagram have been developed to remedy this difficulty [ 12, 
58, 591. 

Case Studies 

Now consider three case studies (based on real-life data), with 
which I and some of my research colleagues have been 
involved for the past six years. These studies, in their own 
ways, testify to the computing power of neural networks in 
solving difficult signal processing problems. 

Case Study I: Chaotic Modeling of Sea Clutter and 
its Cancellation 

For nearly half a century, sea clutter (i.e., the radar backscat- 
ter from an ocean surface) has been modeled as a stochastic 
process, with a variety of probability distributions proposed 
for describing its stochasticity [60-631. However, there is 
now strong experimental evidence that shows that sea clutter 
is indeed a chaotic process [64-661. 

A chaotic process is generated by a deterministic mecha- 
nism of a relatively low dimension, and yet it generates a 
randomlike waveform that exhibits many of the charac- 
teristics that are normally associated with a stochastic proc- 
ess. Table 2 presents a summary of the important properties 
of a chaotic process. 

The term “chaos” was coined by J.A. Yorke, an applied 
mathematician at the University of Maryland [87]. Yorke’s 

paper with Li [88] probably introduced the term as a mathe- 
matical concept, though many others had previously talked 
about chaotic fluid behaviors. Chaos, representing a new 
paradigm, owes its origin to the pioneering work of Lorenz 
on simulated weather data [89]; some of Lorenz’s personal 
recollections of his first computer model of the atmosphere 
appear in [90]. What came out of that computer simulation is 
now known as the Lorenz attractor. An attractor represents 
the equilibrium state of a nonlinear dynamical system, which 
may be observed experimentally after the transients have 
died. The Lorenz attractor is an example of a strange attractor. 
The strangeness comes from two important features: unlike 
a smooth curve or surface, a strange attractor is an object with 
a fractal (i.e., non-integer) dimension; unlike an ordinary 
attractor, the motion of a strange attractor exhibits sensitive 
dependence on initial conditions. 

The term “strange attractor” was coined in a paper by 
Ruelle and Takens [91], in which they claimed that turbulent 
flow is not described by a superposition of many modes (as 
previously proposed) but by strange attractors. The existence 
of chaos in fluid turbulence is confirmed in [92]. 

Using an extensive and ground-truthed database collected 
by means of an instrument-quality X-band radar (called the 
IPIX radar) pointing along a fixed direction and dwelling 
onto a patch of the ocean surface, researchers have demon- 
strated the chaotic nature of sea clutter in light of what is 
known about chaos theory. The clutter-to-noise ratio of the 
data collected with this radar was on the order of 30 dB, and 
the wordlength of the A/D converter was 8 bits (equivalent 
to a dynamic range of 48 dB). Important aspects of the 
research findings reported in [65,66] may be summarized as 
follows: 

1. The largest Liapunov exponent, X i ,  is always positive. For 
the particular radar used to do the data collection, X i  is 
estimated to be about 0.03, which is normalized with respect 
to the pulse-repetition period of the radar. This value is 
essentially independent of the following (for a given radar 
system): 

radar parameter (i.e., amplitude, in-phase component, or 

sea state 
radar location 

quadrature component 

Moreover, the second Liapunov exponent, X2, is very close 
to zero, and for a prescribed embedding dimension, the sum 
of all the Liapunov exponents is negative. The implications 
of these latter observations are twofold: 

Sea clutter is generated by a coupled system of nonlinear 

The dynamic mechanism responsible for the generation of 
differential equations 

sea clutter is a dissipative one 

2. The correlation dimension, Dc, is fractal (i.e., non-integer), 
lying in the range of 6 to 9. Moreover, it is also essentially 
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Recursive prediction. 

independent of radar parameter, sea state, and radar location. 
However, unlike the Liapunov spectrum, the correlation di- 
mension is essentially independent of the radar system used 
to perform the data collection. 

Sea clutter is indeed generated by a chaotic process. But 
the mechanism by which this chaotic process actually arises 
in physical terms is unknown. 

With this background on the chaotic nature of sea clutter, 
we may now turn attention to its signal processing implica- 
tions. Specifically, we wish to (1) demonstrate that sea clutter 
permits a nonlinear predictive model with a significant hori- 
zon of predictability, and (2) describe a novel radar applica- 
tion exploiting this predictive capability. 

The nonlinear predictive modelling of sea clutter involves 
the use of recursive (iterated) prediction [12,93], illustrated 
in Fig. 2. This is a difficult procedure designed to test the 
generalization capability of the model. For the case study 
presented here, a neural network is used as the predictive 
model. There are two separate operations to be considered: 

The neural network is trained to operate as a one-step 
predictor, as depicted in Fig. 2a. A set o fp  samples x(n-1), 

x(n-2), ...,x( n-p) is applied to the input layer of the network, 
and its synaptic weights are adjusted to minimize the 
prediction error [i.e., the difference between the actual 
sample value x(n) and the predicted value, i ( n ) ]  in a 
mean-square sense. For this to be attained, the size of the 
training set has to be large enough, and the training session 
would have to be continued until the synaptic weights of 
the network reach steady-state values, whereafter they are 
fixed. 

The neural network is next tested for its generalization 
performance, as depicted in Fig. 2b. The network is initial- 
ized by presenting it a set of samples xk-1), @2), ...,x( 1) 
that have not been seen by the network before. The result- 
ing prediction i (p) is delayed by one time unit and then 
fed back to the input. Correspondingly, the samples x@- 
1),..4(2) are each delayed by one time unit, and the oldest 
sample x(1) is dropped to make room for the delayed 
prediction i ( p ) .  The set of p samples so obtained is used 
to make a new prediction, and the process is repeated until 
all the original samples used to do the initialization have 
been removed from the recursive prediction process. From 
that point on, the neural network operates in a completely 
autonomous fashion, producing a time series that is repre- 
sentative of the dynamics learned by the neural network as 
a result of the training process. 

For the predictive modelling of sea clutter, we used a 
multilayer perceptron trained with the backpropagation algo- 
rithm. The size of the input layer, denoted by p ,  is chosen in 
accordance with the formula p 2 rDE, where DE is the 
embedding dimension, and 7 is the embedding delay (nor- 
malized with respect to the pulse repetition period). In prac- 
tice, it is inadvisable to choose p much larger than the lower 
bound, TDE, as the effect of additive noise contaminating the 
input radar data would become more pronounced. Based on 
measurements on real-life data reported in [66], the embed- 
ding dimension DE for sea clutter is estimated to be 10. Also, 
for the particular radar (operating at a pulse repetition fre- 
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quency of 1 kHz) used in those measurements, the normalized 
embedding delay, T ,  is estimated to be 5. Thus, for the 
problem at hand, choosing p 50 is logical. 

To illustrate the importance of this lower bound onp, Fig. 
3 shows the results obtained using recursive prediction per- 
formed on a multilayer perceptron that had already been 
trained (using the back-propagation algorithm) on actual sea 
clutter data. The size of the training dataset was lo4 clutter 
samples. The multilayer perceptron had two hidden layers: 

Input layer: 50 source nodes 
First hidden layer: 80 neurons 
Second hidden layer: 55 neurons 
Output layer: 1 neuron 

The neurons in both hidden layers used a logistic function for 
their activation functions, whereas the output neuron was 
linear. The solid line in Fig. 3 is the actual sea clutter wave- 
form, and the dashed curve is the result of recursive predic- 
tion. The origin in this figure corresponds to the end of the 
initialization procedure. We see that for about the first 50 
points shown in Fig. 3, the predicted and actual waveforms 
of sea clutter match fairly closely and thereafter they diverge. 

100 

90 1 

I 
O d  50 100 150 200 250 

Time 

7. Recursive prediction of sea clutter, using a multilayer percep- 
tron with 50 source nodes, two hidden layers with 80 and 55 neu- 
rons, respectively, and one output neuron. The solid curve refers 
to the original sea clutter wavefomz. The dashed cuwe  refers to 
the recursive predicted waveform, for which thefirst 50points  of 
the sea clutter set (not shown in the figure) are used as the initial 
starting point. 

This result confirms that sea clutter produced by a nonco- 
herent radar (i.e., one that relies on amplitude information 
alone) is locally predictable. Moreover, the horizon of pre- 
dictability, namely, 50, is approximately equal to the inverse 
of the largest Liaponuv exponent, 0.03. (For an accurate 
calculation of the horizon of predictability, see [66].) The fact 
that a neural network with an input layer of the right size can 
be trained to learn the underlying nonlinear dynamics of sea 
clutter is further testimony for the important observation 

50 100 150 200 250 
Time 

I 
4. Sensitivity o f the  recursive prediction process to a change in 
the neural network design. The network used f o r  this experiment 
consists of an  input layer with 45 source nodes, two hidden layers 
with 80 and 55 neurons, respectively, and one output neuron. 

made previously: the generation of sea clutter is governed by 
a coupled system of nonlinear differential equations. In ef- 
fect, the neural network provides an approximation to such a 
system. 

Figure 4 shows the result of a recursive prediction per- 
formed by a multilayer perceptron with p = 45, which is 
slightly smaller than the lower bound of 50 defined above. 
Except for this difference, the model has two hidden layers, 
with 80 neurons in the first one and 55 neurons in the second 
one, and a single linear output neuron as before. Moreover, 
the model is trained with the same data set and of the same 
size used to obtain the result shown in Fig. 3, and the recursive 
prediction procedure is used to test the model after complet- 
ing the training session in exactly the same way as before. 
There is a dramatic difference between the results shown in 
Figs. 3 and 4. In particular, when the size of the input layer 
of the multilayer perceptron model is not large enough, the 
model fails to capture the underlying dynamics of sea clutter. 
Clearly, the choice of a neural network predictor that violates 
the lower bound on the size of p is unacceptable. 

To emphasize the need for a nonlinear predictive model, 
we show Fig. 5, the recursive prediction results obtained 
using (a) an autoregressive (AR) model, and (b) a multilayer 
perceptron model. Both models used 50 delay taps for the 
input, in accordance with the lower bound ofp 2 50. Clearly, 
the AR model, which is linear, fails completely to capture the 
underlying dynamics of sea clutter. 

Turning next to the radar application of the predictive 
modelling of sea clutter, Fig. 6 shows the results of another 
experiment involving an off-the-shelf commercial noncoher- 
ent marine radar operating in a scanning mode [94]. In this 
application, the multilayer perceptron, trained on examples 
drawn from sea clutter and then having its synaptic weights 
fixed, acts as a clutter (interference) canceller. In particular. 
through training, the network acquires the function of a 
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(a) Azimuthal time series containing sea clutter and target. (b) 
Prediction error at output of neural network. Target is clearly evi- 
dent. 

clutter model. When it is fed with a received signal that 
consists of a target signal plus clutter, as in Fig. 6a, the 
presence of the target signal causes a corresponding pertur- 
bation in the output of the network. That is, the network 
suppresses the clutter component and thereby enhances the 
presence of the target signal at its output, as illustrated in Fig. 
6b. 

Figure 7 demonstrates another interesting property of the 
clutter canceller (nonlinear predictive model), using data 
collected with the same noncoherent marine radar employed 
for Fig. 6. The so-called B-scan (azimuth versus range) 
images shown in the two parts of Fig. 7 represent (a) the 
output of a conventional constant false-alarm rate (CFAR) 
processor, and (b) the output of the clutter canceller. In both 
cases, the images show the respective processor outputs prior 
to the application of a detection threshold. The input radar 
data set contains two closely spaced targets. While the echoes 
from these two targets are blurred together in the conven- 
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. B-Scan images: (a)  Output of conventional CFAR processor. 
(b)  Output of neural network-based clutter canceller. 
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tional CFAR processor image, they are clearly separable in 
the neural-network processor image. 

Case Study II: Modular Learning Strategy for 
Signal Detection in a Nonstationary Environment 

In the first case study, we showed how aneural network, used 
as a nonlinear predictive model, can exploit prior knowledge, 
namely, the fact that sea clutter is chaotic. The only informa- 
tion used in that case study was the information contained in 
the amplitude of the received signal, which is provided by a 
noncoherent radar. This second case study pertains to the 
detection of a weak target signal corrupted by an interfering 
signal. Here, one or the other or both of these signals may be 
nonstationary, and no prior knowledge about the environ- 
ment is invoked. However, these problems are ameliorated 
through the use of Doppler information in addition to ampli- 
tude information, which requires the use of a coherent radar. 
Case Studies I and I1 do have one thing in common: in both 
cases, the radar operates in an ocean environment, with sea 
clutter being the primary source of interference. 

Now consider a novel modular learning strategy for signal 
detection that is motivated by the echo-location (sonar) of a 
bat, which detects, pursues, and captures its target (e.g., an 
insect) with a facility and success rate that is the envy of every 
radar or sonar engineer [95]. We are not suggesting that the 
modular detection strategy describe$ in this article involves 
all the signal processing functions performed in the bat’s 
echo-location system. What we are saying is that the principal 
functions that characterize the modular learning strategy are 
found in one form or another in the bat’s echo-location 
system. 

Figure 8 shows a block diagram of the basic detection 
strategy consisting of three fundamental functional blocks 
that are designed to perform time-frequency analysis, feature 
extraction, and pattern classification, in that order. This form 
of front-end processing is commonly used in pattern recog- 
nition tasks [106]. 

For the time-frequency analysis, we have chosen the 
Wigner-Ville distribution (WVD); Table 3 presents a sum- 
mary of the important properties of the WVD. Among the 
family of bilinear time-frequency distributions, the WVD 
possesses two distinct advantages over other members of the 
family for signal detection [ 1071: 

1. It is always a real-valued function. 
2. It exhibits the least amount of spread in the time-frequency 
plane. 

One criticism that is often made against the WVD is the 
generation of cross-terms, or more precisely, cross Wigner- 
Ville distributions, due to the combined presence of two (or 
more) components in the received signal. Various procedures 
have been developed in the literature for dealing with the 
cross Wigner-Ville distributions. In [ 108,1091, for example, 
an algorithm known as the reduced interference distributions 
(RID) is described, which is designed to flatten the cross- 

Pattern 
classification Feature extraction 

Time-frequency 
analysis 

8. Functional diagram of the receiver. 

terms so that they bounce up and down less, when conipared 
io the standard form of the WVD. In so doing, the RID 
provides an “almost” positive distribution, which is what a 
time-frequency energy distribution should be, particularly for 
those applications that require the analysis of signals. For 
signal detection, it would be tempting to do the opposite (i.e., 
retain the cross Wigner-Ville distributions and suppress the 
auto-terms). The detection strategy would then focus solely 
on the presence or absence of the cross Wigner-Ville distri- 
butions. Such a procedure would, however, violate the infor- 
mation preservation rule by removing useful information 
contained in the auto-terms; its use is therefore not recom- 
mended for signal detection. 

In a clutter-dominated environment, which is the environ- 
ment of interest in Case Study 2, the cross-terms arise only 
when a target signal is present. Thus, the presence of such 
terms is in fact an asset. We say this because the terms provide 
another feature that can enhance the visibility of a target in 
the time-frequency image resulting from the application of 
the WVD. Indeed, the cross-terms are essential to the optimal 
information-preserving property of the WVD. To appreciate 
the importance of the WVD for the radar detection problem, 
we present three sample WVD images of real-life radar 
returns. These represent three different situations pertaining 
to an ice-infested ocean environment using a coherent radar 
[110-1111: 

0 Strong radar retum from a large ice target, shown in Fig. 
9a. 

0 Relatively weak radar return from a small ice target, shown 
in Fig. 9b. 

0 Sea clutter alone, shown in Fig. 9c. 

The WVD images presented in this figure significantly dif- 
ferentiate between these three scenarios. Unfortunately, the 
use of the WVD leads to a significant increase in the amount 
of redundant information contained in the time-frequency 
image of a radar signal. To improve computational effi- 
ciency, it is therefore necessary to follow up the WVD with 
some form of data compression. (This point is also made in 
[112, 1131, where singular value decomposition is used for 
the extraction of features from the WVD image of a signal 
for the purpose of signal detection or classification. However, 
the scheme described therein is primitive compared to the 
modular learning strategy embodied in Fig. 10, as it lacks a 
learning capability and does not address the two fundamental 
questions raised later in this case study.) 
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A signal processing tool that is well suited for data com- 
pression is principal components analysis (PCA) [ 1061. Ba- 
sically, the PCA performs an eigendecomposition on a square 
matrix (in our case, the covariance matrix of the time series 
obtained by scanning the WVD image of the incoming radar 
signal on a column-by-column basis, with each column rep- 
resenting a time slice), orders the eigenvalues in descending 
order, and retains the eigenvectors associated with the largest 
eigenvalues. The compressed signal is represented by a linear 
combination of the eigenvectors retained by the PCA. Thus, 
the PCA is instrumental in extracting a finite set of features 
for the WVD image that is optimum (among linear tech- 
niques), in that the original WVD image (and therefore the 
original received signal) can be reconstructed from these 
features in a minimum mean-square error sense. In other 
words, information loss brought on by the extraction of 

features by the PCA is minimized and quantifiable, and so 
we are still operating in the realm of the information preser- 
vation rule. It is conceivable that for our application nonlinear 
devices known as principal curves/surfaces [ 1141 in statistics 
can do better than PCA. A similar capability is provided by 
Kohonen’s self-organizing feature map [115], which is of a 
low dimension and used to approximate a higher-dimensional 
scatter-plot of samples. For a comparison of statistical and 
SOFM approaches, see Mulier and Cherkassky [116]. 

The final operation in our modular learning detection 
strategy is that of pattern classification, the purpose of which 
is to distinguish between two different time-frequency im- 
ages on the basis of features extracted by the PCA. One image 
pertains to the presence of clutter alone. The other image 
pertains to the combined presence of clutter and the target 
signal of interest. The pattern classification process is typi- 
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cally nonlinear, making the task that much more challenging 
to implement. 

Figure 10 shows a block diagram of a neural network- 
based implementation of the modular detection strategy de- 
scribed herein [110-1111. It consists of two channels, one 
termed the clutter or interference channel, and the other 
termed the target channel. Both channels are fed from a 
common input representing the WVD image of the received 
signal. Each channel consists of a PCA network followed by 
a multilayer perceptron for pattern classification. The PCA 
networks are trained in a self-organized fashion, using the 

Target signal is present (hypothesis H,) 

Classification 

channel 

Target 
channel 

Principai components 
analyser 1, matched 
to the WVD of signal 

plus interference 

Principal mmponents 
analyser 1, matched 

interference 

Feature j 1 
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Wagner-Ville 
distribution (WVD) 

computed 

Input Data (complex time-series) 

0. Block diagram of the two-channel receiver using modular 
learning strategy. 

generalized Hebbian algorithm (GHA) due to Sanger [ 1171. 
Table 4 presents a summary of this algorithm. The PCA 
network in the clutter channel is trained by presenting it with 
WVD images known to represent clutter only, under varying 
environmental conditions. Once the training is completed, the 
synaptic weights of that PCA network are fixed. The training 
procedure of the PCA network for the target channel follows 
a similar procedure, except for the fact that its training 
examples consist of WVD images known to contain target 
plus clutter, under varying conditions. The outputs of the 
PCA networks may be viewed as a specific number of domi- 
nant projections of the input WVD space on two subspaces, 
with one subspace representing clutter alone and the other 
subspace representing target plus clutter. Typically, these two 
subspaces are unknown and nonlinear; projections of the 
WVD space onto them are therefore best learned by way of 
real-life examples that are representative of the two scenar- 
ios. The end result is that the PCA network in one channel is 
adaptively matched to clutter alone, and the PCA network in 
the other channel is adaptively matched to target plus clutter, 
hence the designations of the two channels in Fig. 10 as 
clutter (interference) and target channels, respectively. 

Each multilayer perceptron has two hidden layers and an 
output layer with three output nodes. The output nodes are 
linearly combined into a single decision-making node. Thus, 
the decision as to whether a target is present or not is deferred 
to the very output of the system, in accordance with the 
information preservation rule. Specifically, if a threshold set 
for a prescribed probability of false alarm is exceeded by the 
overall output of the receiver, a decision is made that a target 
is present; otherwise, a decision is made that the received 
radar signal consists of clutter alone. The synaptic weights of 
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the two hidden layers and output layers of both perceptrons 
and those of the linear combiner are trained simultaneously 
in a supervised manner by presenting the whole network with 
WVD images that are known to represent the following 
situations that can arise: 

Clutter alone 

Strong target return plus clutter 

Barely visible target return plus clutter 

The training of these layers is performed using the back- 
propagation algorithm. As a matter of interest, the first hidden 
layer of each multilayer perceptron uses the notions of recep- 
tive fields and weight sharing described in [12, 1201. By 
“receptive field,” we mean that each neuron in the first hidden 
layer is connected only to a finite set of neurons that lie in its 
local neighborhood in the input layer. By “weight sharing,” 
we mean that all the receptive fields of the layer share the 
same set of weights. The use of receptive fields and weight 
sharing is designed to reduce the number of synaptic connec- 

tions and possibly improve the generalization performance 
of the multilayer perceptrons. 

There are two basic questions that need to be addressed in 
the context of the modular learning strategy for signal detec- 
tion described in Fig. 10. First, what is the rationale for using 
two channels? To answer this question, we first note that in 
the traditional approach to radar target detection in a clutter- 
dominated environment, for example, we may use a “best” 
mismatched filter for clutter discrimination [ 1211. In such an 
approach involving a single channel in the receiver, the 
requirement for best performance in additive noise is traded 
for an improvement in performance in clutter by purposely 
mismatching the filter. We may avoid the need for this 
trade-off in performance by using two nonlinear matched 
filters as depicted in Fig. 10, with each filter being adaptively 
matched to the received signal arising under one of the two 
hypotheses that are to be distinguished. In addition, the use 
of two different channels as described herein provides two 
independent assessments of the decision that should be taken, 
given the received signal. A simple and yet effective method 
of integrating the two channel outputs is through the use of 
linear combining [122], which is precisely what has been 
done in designing the modular learning strategy of Fig. 10. 
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This strategy therefore makes it possible to learn how to 
classify the two sets of features that have been learned by the 
PCA networks in the target and clutter channels. An altema- 
tive way to state this is that it exhibits a “learning to learn” 
capability. 

The second question is: why does each channel have three 
output nodes? The nonlinear input-output mapping produced 
by the modular learning strategy of Fig. 10 depends, among 
other things, on the number of output nodes per channel. The 
use of two output nodes per channel severely limits the 
capacity of each multilayer perceptron to classify the re- 
ceived signal. On the other hand, the use of three output 
nodes per channel makes it possible to provide a finer classi- 
fication of the received signal by saying 

0 the received signal contains a strong target signal 

e the received signal contains a weak target signal, or 

0 the received signal contains clutter alone 

This, in turn, has the beneficial effect of reducing the overlap 
between the two primary classes of interest: target is not 
present (null hypothesis), and target is present (the other 
hypothesis). Consequently, the receiver with three output 
nodes per channel has the potential of outperforming the 
receiver with two output nodes per channel. Indeed, experi- 
mental results presented in [ 110, 11 13 bear out the validity of 
this statement. 

Figure 11 presents a comparison of the detection results 
obtained for the modular receiver of Fig. 10 with those of a 
conventional Doppler CFAR (constant false alarm rate) proc- 
essor for a false alarm rate set at Here, black denotes the 
presence of a target signal, and white denotes clutter. With 
the target constantly being in the range of the radar (i.e., for 
all time), we should ideally see a continuous black strip 
(representing the target) in a light background (representing 
the clutter). In light of this observation, a significant improve- 
ment in the modular learning strategy is found by filling in 
the periods of “silence” that are observed in the detection 
performance of the conventional Doppler CFAR processor. 
This “silence” is caused by the partial obscuration of the 
target (a small piece of ice in the experiment described 
herein) by an ocean wave in front of it, or the dipping of the 
target in a wave trough. The performance displayed in Fig. 
11 is quite remarkable, since the modular learning system is 
able to perform satisfactorily even in a situation when the 
target returns are weak; in other words, a barely visible target 
has been made “visible in signal processing terms”. The other 
observation made from Fig. 11 is the occasional blanking of 
a signal from the target (as seen in the middle of the plot); in 
such cases, there is no way any method would be able to 
detect the target since, insofar as the radar is concerned, the 
target is simply not there to be seen. In [1 1 11, experimental 
results are presented demonstrating that the modular learning 
system of Fig. 10 has a robust performance with respect to 
wide variations in sea state. 
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In summation, it may be difficult, in the traditional ap- 
proach to radar receiver design, to make provisions for real- 
life situations in a manner similar to that attainable with the 
modular learning strategy described in Fig. 10. Unfortu- 
nately, however, the highly complex composition of this 
structure defies a detailed mathematical analysis. Moreover, 
to design it, one would need a sufficiently large training set 
that is truly representative of the operational environment. 
Once the training process is completed and all the synaptic 
weights of the PCA networks and multilayer perceptron 
classifiers are computed and thereafter fixed, and the receiver 
is ready for normal operation, signal propagation through the 
network is very rapid. This is basically due to the fact that 
both the PCA networks and the multilayer perceptron classi- 
fiers consist of feedforward structures. 

Case Study Ill: Mixture of Principal Components 
for Image Compression and Segmentation 

Our third and final case study pertains to the use of neural 
networks for image compression and segmentation. The 
study of image compression methods has been an active area 
of research since the inception of digital imaging. Successful 
image compression schemes must satisfy two conflicting 
requirements : 

During the coding phase of image compression, data are 
transformed from their native format, typically an array of 
gray level or trichromatic pixels, into a new format that 
requires less bandwidth or storage. 

The transformation must preserve the essential information 
content of the original image, so that the difference be- 
tween the original and decoded images is not perceptually 
discernible. The significance of this difference must be 
clearly evaluated within the context of the end use of the 
image. For example, medical images must not lose their 
diagnostic value after compression. 

A major problem with many image processing applications, 
is their implicit assumption of stationarity. The fallacy of this, 
assumption is the reason why many conventional image 
processing techniques perform poorly in the vicinity of edges 
Here, the image statistics tend to be radically different from 
the global statistics of the image. Conventional image com- 
pression methods, such as the Karhunen-Lobve transform 
(KLT) [106], are designed according to a globally optimal1 
mean-square error criterion. However, the aforementioned 
nonstationarity of edge regions makes this criterion far from 
ideal. Therefore we may say that if an image compression 
method can be made to adapt to local nonstationarities in the 
image, then its performance would be superior to that of the: 
KLT. 

To account for variations in the local statistics of an image, 
a transformation must have the capability to adapt locally. In 
[ 123-1241, a new family of adaptive transform coding meth- 
ods, called a mixture of principal components (MPC), is 

Principal Components Vector Quantization 

Mixture of PCs 
2. A spectrum of representations in two dimensions. 

described. Specifically, it combines desirable attributes of 
both principal components analysis (PCA) [lo61 and vector 
quantization (VQ) [125]. Within a class, an input vector is 
represented by a continuous, linear combination of M basis 
vectors of the subspace in a manner analogous to the PCA 
representation. But, because of the partitioning of the data 
into a discrete number of regions or classes, the MPC effects 
a nonlinear mapping of the input data in a manner analogous 
to VQ. The relations between these three methods of repre- 
sentation are illustrated in Fig. 12 for a two-dimensional 
example: 

1. The PCA approach forms a complete, continuous rep- 
resentation of input data using, in this example, a linear 
combination of two basis vectors, as indicated in Fig. 12(a). 

2. With VQ, the input data are represented in a purely 
discrete manner by partitioning the input space, in this exam- 
ple, into 10 distinct regions and representing each region by 
a Voronoi center, as indicated in Fig. 12(b). 

3. The MPC lies between these two extremes of data 
representation, as indicated in Fig. 12(c): 

In a manner similar to the VQ, the input space is partitioned, 
in this example, into 4 distinct regions. 

Within each region, the input data are represented, in this 
example, by a single basis vector. Thus, like PCA, the data 
are given a continuous representation. 

For higher-dimensional input spaces, the number of basis 
vectors used in MPC may be two or more, in which case we 
find that planes, hyperplanes, or higher-dimensional sub- 
spaces are formed within the input space. 
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’3. Modular structure of OIAL scheme. 

Figure 13 shows a network structure for implementing one 
particular form of the MPC. The system is modular, consist- 
ing of a number of modules corresponding to different classes 
of input data. Each module consists of a linear transformation, 
whose basis vectors are computed using an initial training 
period. The appropriate class for a given input vector is 
determined by the subspace classifier. The system utilizes a 
learning algorithm referred to as the optimallv integrated 
adaptive learning (OIAL) algorithm. The algorithm is self- 

organized, combining both Hebbian learning and competitive 
learning; it produces an adaptive linear transformation that 
tries to minimize the mean-squared error between the input 
data and the decoded data, beyond that attainable with the 
KLT. As such, the learning algorithm is well suited to the task 
of image compression. A summary of OIAL is presented in 
Table 5. 

Figure 14a shows the magnetic resonance image (MRI) 
used for training. The image in Fig. 14b is the adjacent section 
from the same study (patient), which was used for testing. 
Each image consists of 256 x 256 pixels, with the dynamic 
range of 8 bits or 256 gray levels. The training image was 
divided into blocks of 8 x 8 pixels for an input dimension of 
N =  64. The blocks were overlapped at two pixel intervals for 
a total number of 15,625 training samples. During training, 
the samples were presented in random order. For comparison, 
the KLT was calculated based on the same training data. 

The test image was divided into 8 x 8 non-overlapping 
blocks. These blocks were transformed by the previously 
computed system into a set of coefficients, quantized, and 
then transformed back into image blocks. The coefficients 
were quantized in a similar manner to that of the JPEG 
standard. The first coefficient was coded via first-order 
DPCM using a uniform quantizer. The remaining coefficients 
were coded via PCM using a uniform quantizer. For a given 
coding rate, the same quantization interval was used for all 
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the coefficients. The quantized data were then Huffman- 
coded with a codebook optimized for Laplacian distributions. 
The number of bits assigned for the class information was 
simply log& bits per block. Different bit rates were used in 
the quantization step. For the KLT, an identical coding 
scheme was used except, of course, that no additional bits per 
block were required to code the class assignment. 

For the new approach, the overall mean-squared error was 
reduced and the perceptual image quality was improvedl, 
when compared to the KLT. More image details were pre- 
served and fewer artifacts were introduced. In particular, Fig. 
15a shows the details of the new coding scheme with 1218 
classes, 4 coefficients per block, at 0.25 bpp, while Figs. 151b 
shows the corresponding details of KLT coding at the same 

of these two images, it is clear that the OIAL image preserves 
more features than the KLT image. In the upper forehead 
region near the skull, the dark line of the outer table of the 
skull between the white line of the skin and the white line of 
the diploe (i.e., hard porous tissue between the walls of the 
cranial bones) is visible in the OIAL, but completely ob- 
scured in the U T .  The same is true of the detail in the top 
portion of the orbit. Not only does the KLT lose information, 
it also introduces texture variations that are not present in the 
original image nor in the OIAL image. This texture interferes 
with the visibility of the sulci in the outer portion of the brain. 

(b) 

5. ( a )  Reconstruction of test image using OIAL; (b) reconstruc- 
bit rate of 0.25 bpp. When examining the detailed structure tion of test image using KLT. 
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16. Original Lena image. 

The image compression results just presented are a good 
indication that the OIAL generalizes within the pertinent 
class of image. While the “within class condition” may seem 
restrictive at first, in practice this need not be so. Moreover, 
while we do not claim that there exists a single network 
configuration that would perform as well as a general-pur- 
pose image compression scheme across a wide variety of 
images, it is interesting, nevertheless, to see how well a 
system trained on one class of images generalizes outside that 
image class. Figure 16 shows the Lena image that is obvi- 
ously quite different from the image used for training, as 
shown in Fig. 14a. Figure 17a shows theresulting compressed 
image using the same network (4 coefficients and 128 
classes) and bit rate (0.25 bpp) as that used for the image 
shown in Fig. 14b. The mean-squared error from this image 
was 54.9, referred to the original image. For comparison, the 
image was compressed using the KLT of itself and quantized 
to the same number of bits (4 coefficients with 0.25 bpp). The 
resulting image is shown in Fig. 17b, and has a mean-squared 
error of 71.0, also referred to the original image. These two 
images clearly show that the OIAL system trained on a 
magnetic resonance image of a head performs better than the 
KLT optimized for the specific image being coded. 

For many applications, it may be advantageous to have 
similarity between adjacent classes. The self-organizing fea- 
ture map (SOFM) introduced by Kohonen [115] makes for 
such a provision in a simple and yet effective fashion. (The 
use of the SOFM algorithm as the basis of subspace classifiers 
is also discussed by Kohonen [ 1261; the resulting structure is 
referred to as the “adaptive subspace self-organizing algo- 
rithm”, which is quite different from the integration of the 
OIAL and SOFM algorithms.) 

During training, each training vector is used not only to 
update the winning class, but also classes that are adjacent to 
it. By integrating the SOFM algorithm into the composition 

of the OWL algorithm [123], two useful properties are 
achieved: 

0 The OIAL algorithm acquires the ability to perform image 
segmentation. 

* The problem of choosing the initial set of transformation 
matrices is removed from the algorithm. 

The result of this integration is a topological ordering of 
classes, during training with like classes being close together 

17. (a)  Reconstruction of Lena image using OIAL; (b) reconstruc- 
tion of Lenna image using KLT. 

I 
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18. OIAL segmentation map of test image with 32 classes, two C O .  

efficients per class. Color indicates class membership; intensity is 
weighted by the magnitude of the second coeficient for each 
block. 

in a manner analogous to the ordering of directionally sensj - 
tive columns in the visual cortex [127]. This is illustrated in 
Fig. 18, where each basis block acts as a feature detector. The 
features corresponding to the basis vectors are either lines or 
edges of a specific orientation. When comparing adjacent 
classes, the angles of the features are similar. Moreover, the 
angles change in a somewhat regular manner as the class 
number progresses. One other important property resulting 
from the combined use of OIAL and SOFM algorithms is that 
the segmentation is independent of variations in illumination, 
as it is natural in the human visual system [ 1281. This property 
may prove to be of significant practical value in image 
analysis (e.g., computer aided tomography preprocessing, 
and obj ecthackground discrimination). 

The OIAL algorithm summarized in Table 5 is one way 
of implementing the MPC method. In [124], another algo- 
rithm, called the multi-class maximum entropy coder 
(McMEC), is described for implementing the MPC method. 
The McMEC algorithm uses only one basis vector per mod- 
ule, while the OIAL algorithm has M basis vectors. As a 
consequence, the McMEC algorithm is required to use a 
much larger number of modules than the OIAL algorithm. 

One of the most demanding application areas of image 
compression is compressing medical images, where the ini- 
plications of any sort of distortion are grave indeed. Dony, let 
al., [129] have investigated the application of the McMEC 
algorithm to the compression of clinical chest radiographs 
acquired digitally using the Fuji computed radiography (CR) 
system. Comparative evaluations with the KLT were also 
included in the study. Four degrees of compression were 
used: 10: 1,20: 1,30: 1, and 40: 1. Seven radiologists evaluated 
the images. The original and four compressed versions of 

each image were shown simultaneously to each radiologist, 
who was asked to rate each one on a five-point scale for image 
quality and visibility of pathology. Only for the 40: 1 versions 
were there any unacceptable ratings of the McMEC com- 
pressed images; even then, these images received a substan- 
tial number of top ratings. Many times, the radiologists 
commented on how little difference there was, if any, be- 
tween the images. Occasionally, a radiologist would pick the 
40:l compressed image as the best. When compared to the 
KLT, the McMEC versions ranked better than or as good as 
the KLT versions 17 times out of 18. In addition, four out of 
nine times the 40: 1 McMEC version was ranked as good or 
better than the 30: 1 KLT version, which is quite remarkable. 

Currently, the performance of the MPC approach of image 
compression is being explored for synthetic aperture radar 
(SAR) images. In preliminary results, the OIAL approach has 
reduced the reconstruction error by 3 dB over the KLT for 
the same compression ratio. This margin of improvement 
appears to be valid up to compression ratios of 50:l. One 
explanation for this marked reduction in distortion is the fact 
that SAR image formation process is highly nonlinear and 
includes a high degree of “speckle” noise. As a result, the 
nonlinear nature of the MPC approach matches the signal 
characteristics better than the linear KLT. 

Information-Theoretic Models for 
Unsupervised Learning 

In the previous section we discussed three different signal 
processing applications of neural networks that require the 
use of unsupervised learning, exemplified by the nonlinear 
predictive model in Case Study I, and linear PCA networks 
in Case Studies I1 and 111. In this section, we discuss another 
powerful approach to unsupervised learning, which is rooted 
in information theory. The approach builds on the so-called 
principle of maximum information preservation, also re- 
ferred to as Infomax for short, which is due to Linsker [ 12, 
130-1331. It may be stated as follows: 

“The transformation of a vector x in the input layer of a 
neural network to a vector y in the output layer of the network 
should be so chosen that activities of the neurons in the output 
layer jointly maximize information about the activities in the 
input layer. The parameter to be maximized is the mutual 
information between the input vector x and the output vector 
y in the presence of processing noise.” 

This principle may be viewed as the neural network coun- 
terpart to the concept of channel capacity, which defines the 
Shannon limit on the rate of information transmission 
through a communication channel. 

Becker and Hinton [12, 134-1371 have extended the idea 
of maximizing mutual information to unsupervised process- 
ing of the image of a natural scene. Specifically, for a given 
image, the mutual information between the outputs of two 
neural network modules is maximized, with adjacent and 
nonoverlapping patches of the image providing the inputs. 
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This latter principle is referred to in the literature as Zma .  A 
polarimetric radar application involving navigation along a 
confined waterway, which builds on a variant of Zmax, is 
described in [137-1381. 

Both of these unsupervised learning procedures, Infomax 
and Zmax, rely on the use of noisy models for their operation, 
which makes their application all the more realistic. Infomax 
is well suited for the development of unsupervised learning 
models and feature maps. Zmax, on the other hand, is well 

suited for image processing with emphasis on the discovery 
of properties of a noisy sensory input that exhibit some form 
of coherence across space and time. 

Bell and Sejnowski [139, 1401 have built on these infor- 
mation-theoretic models for unsupervised learning by devel- 
oping their own algorithms to tackle the difficult signal 
processing problems of blind signal separation and blind 
deconvolution. The paper by Herault and Jutten [141] is the 
first neural net paper on blind signal separation using Heb- 
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bian learning. For a list of references on blind signal separa- 
tion, see Comon [142]. Note, however, toward the end of‘ 
1995, close to 50 papers have been published on this subjecl 
since Comon’s paper. Also, for a review of traditional signal 
processing methods used in blind deconvolution, see [ 143- 
1441. It appears that the first application of Infomax to the: 
blind deconvolution problem in the context of blind equali-. 
zation of a communication channel was described in [145]. 

A typical blind signal separation may be represented by a 
set of sources corresponding to a number of people engaged 
in a conversation with music in the background. The signals, 
si(& s2(t), ..., sd t )  produced by these different sources are 
mixed together by an N-by-N matrix, A. The sources of these 
signals and the mixing matrix A are all unknown. All that is 
available for processing is a corresponding set of N received 
signals xi ( t ) ,  x2(t), ... &fit), which are linear superpositions or 
the original signals si@), s2(t), ..., sf i t ) .  The problem is to 
reconstruct these original signals by finding a separating 
matrix, W, that is a permutation and rescaling of the inverse 
of the unknown matrix, A. The problem described herein i!; 
sometimes referred to as the “cocktail-party problem.” 

A similar and equally difficult problem is blind deconvo- 
lution, where a source signal s(t)  is operated on by a linear 
filter of impulse response, h(t), to produce a received signal, 
x(t). The original source signal, s(t) ,  and the impulse re- 
sponse, h(t), are both unknown. All that is given is a statistical 
model of the source responsible for generating the signal, s( t ) .  
Given the received signal, x(t) ,  the problem is to reconstruct 
the original signal, s(t), with little or no distortion. Areas of 
application of blind deconvolution include the following 
[ 144,1451: 

1. Cancellation of reverberation due to the barrel effect 
encountered in hands-free telephone operation. 

2. Seismic deconvolution, where the problem is compli- 
cated by a lack of precise knowledge of the short-duratioin 
pulse used for excitation. 

3. Image restoration, where difficulties arise due to un- 
known blurring effects caused by photographic and/or elec- 
tronic imperfections. 

4. Blind equalization of a communication channel where 
it is not feasible to send a training sequence of long enough 
duration. 

Going back to the important contribution by Bell and 
Sejnowski [139, 1401, the essence of their approach may be 
summarized as follows. In a neural network whose individual 
neurons are characterized by sigmoidal activation functions, 
maximization of the information transfer across the network 
tends to reduce the redundancy between the neurons in the 
output layer of the network. It is the latter property that 
enables the network to perform signal separation or decon- 
volution in an unsupervised manner. It is assumed that thie 
original signal consists of independent symbols. Table 6 

presents a summary of the underlying principle in the Bell- 
Sejnowski procedure for their blind signal separation and 
blind decanvolution algorithms. In [ 139- 1401, experimental 
results are presented that demonstrate the capability of this 
new approach for solving blind signal separation and blind 
deconvolution problems. Although these demonstrations are 
indeed impressive, the unsupervised learning algorithms de- 
veloped by Bell and Sejnowski in their present forms are of 
limited use in certain fundamental respects, as summarized 
here: 

The neural network models considered are of the single- 
layer type, with the result that the optimal mappings dis- 
covered by the algorithms are constrained to be linear; the 
use of multilayer models may lead to the development of 
more powerful input-output mappings. 

For the blind signal separation problem, for N inputs it is 
assumed that there are an equal number of outputs available 
for processing. There is no corresponding theory for the 
more general case when the number of inputs is not equal 
to the number of outputs. 

In a realistic environment pertaining to the blind signal 
separation problem, there are unavoidable propagation de- 
lays associated with the individual signal paths before they 
are mixed together. Typically, these propagation delays are 
unknown. Some adaptive mechanism would therefore 
have to be incorporated into the blind signal separation 
algorithm to take account of this practical issue. 

In the blind deconvolution pi.oblem, it is assumed that the 
original signal consists of statistically independent sym- 
bols. Although this assumption can be justified in certain 
situations (e.g., channel equalization), it would be useful 
to relax the assumption of statistical independence. 

These four important research issues, the first three of which 
are highlighted in [139], certainly deserve more attention. 

Perhaps the most important point to emphasize here is that 
the use of information theoretic models for unsupervised 
learning, as in the work of Bell and Sejnowski, is a move 
away from the mean-square error criterion that has permeated 
so much of the traditional approach to the design of neural 
networks. 

Concluding Remarks 

Neural networks, often referred to as an emerging technol- 
ogy, have grown very rapidly on many fronts during the past 
10 years. Their theory and design principles have benefited 
enormously from contributions made by workers in many 
diverse fields. As such, they represent a significant addition 
to the “kit of tools” available to system designers. Their 
ability to learn in a supervised or unsupervised manner, 
depending on the way in which they are applied, makes them 
well suited for solving difficult signal processing tasks. In 
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particular, they can naturally account for the commonly 
encountered properties of real-life data, including nonlinear- 
ity, nonstationatity, and non-Gaussianity. 

Perhaps the biggest virtue of neural networks is that they 
learn about their environment by way of examples, and 
thereby construct an input-output mapping that brings to 
mind the notion of nonparametric statistical inference. In so 
doing, the solutions that they compute may not be guaranteed 
to be optimum, but they are usually found to be good engi- 
neering solutions. Most importantly, from a signal processing 
perspective, they have the potential (by themselves or in 
combination with other technologies) to outperform their 
traditional counterparts, as demonstrated by the three case 
studies presented in this article. 
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