Scuba: Diving into Data at Facebook

Presenter: Lavanya Subramanian
Need for Data Analysis

• **Performance monitoring**
 – Detect unexpected performance drops/rises

• **Pattern mining**
 – Understand user response to new features

• **Ad revenue monitoring**
 – Identify regional drops/rises in ad clicks and revenue
Data Analysis at Facebook

• Large data volumes
• **Real time analysis** of this data
• Key Requirements
 – Low latency
 – Flexibility
 – Scalability
Proposed Solution: Scuba

• **Structure**
 – In-memory database
 – Across hundreds of servers

• **How does it work?**
 – Holds and processes sampled real-time data
 – Query interface to access data
 – Visualization interface to analyze data
Architecture

Server

Leaf nodes
Data Layout

• Data stored in tables
• Data types supported
 – Integers, strings, sets of strings, vectors of strings
• Different compression for different data types

Table Characteristics

• Table is created upon data arrival at a leaf node
• Table can have empty columns; treated as null
Data Ingestion into Scuba

Scribe

Leaf nodes
Data Ingestion into Scuba

- Events are **sampled** to reduce the data volume
- Use Scribe, a distributed messaging system to
 - Collect, aggregate and deliver data to Scuba
- For each batch of incoming data
 - Pick **two leaf nodes at random**
 - Send the batch to the node with more free memory
- Data compressed and sent to disk
- Data then read back and stored in memory
Dealing with Old Data

• Memory capacity is a concern

• Need to add new servers every 2-3 weeks

• Delete data based on
 – Age: Sample and preserve a fraction of old data
 – Space: When exceeding space limits, delete old data
Querying Scuba

• Three kinds of interfaces
 – Web-based
 – SQL
 – API to support querying from application code

• Queries supported
 – Different forms of aggregation
 – Percentiles, histograms

• Joins not supported by Scuba
Query Execution
Query Execution

• Leaf node may or may not contain a table’s data
 – Depends on the table size and age

• Data scanning is usually by time range
 – Time is Scuba’s only notion of index

• Results of a node are omitted beyond a time out
 – Small missing pieces of data do not affect accuracy of computations much
 – Lower response time is a bigger requirement
Performance Model

• Breaks down the latencies of different components

• Function of fanout, processing time at each aggregator, depth of tree
Experimental Setup and Queries

• 4 racks of 40 machines
• Machine configuration
 – Intel Xeon E5-2660
 – 2.2 GHz
 – 144 GB DRAM memory
• 10G ethernet
• Scan query, Time series query
Speedup and Scaleup

[Graphs showing query response time vs. data size factor and number of machines for Time Series Query and Scan Query]

Query Response time (sec)

Data size factor

Number of Machines

Query Response time (sec)
Throughput
Discussion

• Details on the kind of data stored and analyzed

• Performance numbers for a wider set of queries

• Are these query throughputs good enough?
 – Might be fine for an internal system