Crash Course on the History of Database Systems

Adapted from “What Goes Around Comes Around,” by Hellerstein & Stonebraker

Administrivia

• Everyone should have gotten mailing list notification.
 – Speaker sign up.

• If you don’t want to take this for credit, please drop soon.
 – You can still hang out.
 – We won’t judge.
Why?
History Repeats Itself

• Old database issues are still relevant today.

• The “SQL vs. NoSQL” debate is reminiscent of “Relational vs. CODASYL” debate.

• Many of the ideas in today’s database systems are not new.
1960s — IBM IMS

• First database system.
• Hierarchical data model.
• Programmer-defined physical storage format.
• Tuple-at-a-time queries.
Duplicate Data

No Independence

PART
(pno, pname, psize, qty, price)

1001, "Battery Pack", Large, 500, $100
1970s – CODASYL

• COBOL people got together and proposed a standard.
• Network data model.
• Tuple-at-a-time queries.
Network Data Model

Schema

SUPPLIER

PART

Complex Queries

Supplies

SuppliedBy

Supply

(qty, price)
Stonebraker Lessons

• Physical and logical data independence are good.
• Tree-based data models are too restrictive.
• Record-at-a-time forces the programmer to do manual query optimization.

1970s – Relational Model

• Codd saw the maintenance overhead for IMS/Codasyl.
• Proposes database abstraction based on tables.
Relational Model

- Store database in simple data structures (i.e., tables).
- Access it through high-level language (i.e., SQL).
- Physical storage left up to implementation.
Relational Data Model

Schema

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

Supply
(sno, pno, qty, price)
1970s – Relational Model

- **System R** – IBM Research
- **INGRES** – Berkeley
- **Oracle** – Larry Ellison
1980s – Relational Model

- IBM comes out with DB2.
- SQL becomes the standard.
- Oracle wins marketplace.
- Stonebraker creates Postgres.
Stonebraker Lessons

• Set-at-a-time interface offers better physical data independence.

• Database system optimizer is better than manual tuning.

1980s – Distributed DBs

- **SDD-1** – CCA
- **System R** – IBM Research
- **Gamma** – Univ. of Wisconsin
- **NonStop SQL** – Tandem

Bernstein
Mohan
DeWitt
Gray
Quick Detour
Database Architectures

- Shared Memory
- Shared Disk
- Shared Nothing
Database Partitioning

Schema

WAREHOUSE
DISTRICT
CUSTOMER
ORDERS
ITEM
STOCK
ORDER_ITEM

Schema Tree

WAREHOUSE
DISTRICT
CUSTOMER
ORDERS
ORDER_ITEM

Replicated
Database Partitioning

Schema Tree

WAREHOUSE

DISTRICT

CUSTOMER

ORDERS

ORDER_ITEM

Partitions

P1

ITEM

P2

ITEM

P3

ITEM

P4

ITEM

P5

ITEM

Replicated
Distributed OLTP

Application Server

Partitions

P1
ITEM

P2
ITEM

P3
ITEM

P4
ITEM

P5
ITEM
Distributed OLAP

Application Server

Partitions

P1
ITEM

P2
ITEM

P3
ITEM

P4
ITEM

P5
ITEM
1980s — Distributed DBs

• **SDD-1** — CCA
• **System R** — IBM Research
• **Gamma** — Univ. of Wisconsin
• **NonStop SQL** — Tandem

Bernstein | Mohan | DeWitt | Gray
1980s – OO Databases

• Avoid “relational-object impedance mismatch.”

• Tight coupling between objects and database.
Object-Oriented Model

Application Code

class Student {
 int id;
 String name;
 String email;
 String phone[];
}

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Tone Loc</td>
<td>funky@medina.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>444-444-4444</td>
</tr>
<tr>
<td>1001</td>
<td>555-555-5555</td>
</tr>
</tbody>
</table>

Too Much Work

Schema

STUDENT

STUDENT_PHONE
(sid, phone)
1990s – Boring Days

• Microsoft forks Sybase and creates SQL Server.
• MySQL is written as a replacement for mSQL.
• Postgres gets SQL support.
2000s – Internet Boom

• All the big players were heavyweight and expensive.
• Open-source databases were missing important features.
• Custom scale-out middleware.

–Examples: eBay, Facebook
Middleware Approach

Application Server

Middleware

Database Cluster
2000s – Data Warehouses

• Rise of the special purpose data warehouse DBMSs.
 – Distributed / Shared-Nothing
 – Relational / SQL
 – Alternative storage models.
 – Examples: Vertica, Greenplum, Aster Data, Netezza, ParAccel
2000s – NoSQL

- Focus on high-availability & high-scalability:
 - Schemaless (“Schema Last”)
 - Not ACID
 - Custom APIs instead of SQL.
2000s – NoSQL

• Alternative data models:
 – Column-family (Cassandra, HBase)
 – Document (MongoDB, CouchDB)
 – Key-value (Riak, Dynamo)
 – Graph (Neo4j, FlockDB)

• Usually open-source.
• “A” + “P” in CAP Theorem
Quick Detour
CAP Theorem

• Proposed by Eric Brewer that it is impossible for a distributed system to always be:
 – Consistent
 – Always Available
 – Network Partition Tolerant

• Proved in 2002.
Consistency
Availability
Partition Tolerant
2000s – NoSQL

• Alternative data models:
 – Column-family (Cassandra, HBase)
 – Document (MongoDB, CouchDB)
 – Key-value (Riak, Dynamo)
 – Graph (Neo4j, FlockDB)

• Usually open-source.

• “A” + “P” in CAP Theorem
2010s – NewSQL

- Provide same performance of NoSQL without giving up ACID
 - Relational / SQL
 - Distributed (Mostly)

- Usually closed-source.
2010s – NewSQL

- Different solutions:
 - Specialized OLTP (*H-Store*, *VoltDB*)
 - Distributed MVCC (*NuoDB*)
 - Custom Hardware (*Clustrix*, *Spanner*)
 - Relaxed Consistency (*MemSQL*, *SQLFire*)
 - Middleware (*ScaleBase*, *dbShards*)
Observations

• Problems outlined in DeWitt paper are still relevant today:
 – Mixing Workloads.
 – Database Design.
 – On-Line Reorganization.
Observations

• Innovations come from both industry and academia.
• IBM was the vanguard during 1970-1980s.
• Google is current trendsetter.
Next Week

• Distributed Transactions
• Consensus Protocols