It’s My Turn

Jill Clayburgh∗ Ryan O’Donnell†

September 19, 2013

Abstract

I popped a DVD into my DVD player and—thank goodness—the encoding on it was Region 1. *It’s My Turn* was the DVD. I fast-forwarded to the proof of the “Snake Lemma”... my favorite part of the whole movie...

Homological algebra

Figure 1 below shows the key diagram for the Snake Lemma.

![Diagram](http://i.stack.imgur.com/fvbn8.png)

Figure 1: The Snake Lemma’s key diagram

Don’t panic, you will not be required to draw that. Instead, you should directly include that image (drawn by Mr. Andrew Stacey) as found at http://i.stack.imgur.com/fvbn8.png. You should also scale it to 50% of its size.

∗jclay@math.org
†odonell@cs.cmu.edu
On the other hand, for the following diagram you’re on your own:

![Diagram](image)

This section doesn’t really contain any homological algebra; perhaps that’s why it’s unnumbered. Moving on.

1 More math

Let’s now get some practice with some **MORC** math. The topics to be covered:

- Some nonsense.
- \(T^y p e^S e \cdot t \cdot i \cdot n \cdot g. \)
- Citations.

1.1 Some nonsense

Chan et al. probably didn’t make the following definition in [CLRS13]:

Definition 1.1. We define the following set:

\[
A[1] = \left\{ x \mid \int_0^2 t^2 dt \leq \left(\frac{6}{2} \right) \right\}.
\]

I certainly admit this is taking things to an extreme, but when I see some expression like \(\sqrt{a} + \sqrt{b} + \sqrt{c} \) I get antsy because the vertical positioning of the square-root signs is different. Don’t you think it looks nicer as \(\sqrt{a} + \sqrt{b} + \sqrt{c} \), or am I deluding myself?

1.2 Typesetting

In contrast to Subsection 1.1, herein we will prove a theorem. It is a kind of anticoncentration result, which can also essentially be deduced from the Berry–Esseen Theorem.

Theorem 1.2. Assume \(a_0, a_1, \ldots, a_n \in \mathbb{R} \) satisfy

\[
\sum_{j=1}^n a_j^2 = 1, \quad \max_{1 \leq j \leq n} \{ |a_j| \} = \epsilon.
\]

Let \(x_1, \ldots, x_n \) be i.i.d. random variables, each being +1 with probability \(\frac{1}{2} \) and −1 with probability \(\frac{1}{2} \). Then if \(X = a_0 + a_1 x_1 + \ldots + a_n x_n \) it holds that \(\Pr[|X| \leq \epsilon] \leq 2.74 \epsilon. \)
Proof. The proof is a streamlining of one due to Petrov [Pet95, Theorem 2.14]. It will be convenient to rescale the \(a_j \)'s so that \(\epsilon = 1 \); we then want to show

\[
\Pr[|X| \leq 1] \leq \frac{2.74}{\sigma},
\]

where \(\sigma := \sqrt{\sum_{j=1}^{n} a_j^2} \). Define the functions \(f, g : \mathbb{R} \to \mathbb{R}_{\geq 0} \) by

\[
f(x) = \frac{2(1 - \cos x)}{x^2}, \quad g(t) = \begin{cases} 1 - |t| & \text{if } |t| \leq 1, \\ 0 & \text{else.} \end{cases}
\]

(The function \(f \) has a removable discontinuity at \(0 \).) Integration by parts shows that \(f \) is the inverse Fourier transform of \(h_i \); i.e.,

\[
f(x) = \int_{-\infty}^{\infty} e^{-itx} g(t) \, dt.
\]

By considering the first two terms of the Taylor series for \(\cos x \) we see that \(f(x) \geq \frac{11}{12} \) on \([-1, 1]\); hence \(\frac{12}{11} f(x) \geq 1_{x \in [-1, 1]} \) for all \(x \in \mathbb{R} \). We therefore have

\[
\Pr[|X| \leq 1] \leq \mathbb{E} \left[\frac{12}{11} f(X) \right]
\]

\[
= \frac{12}{11} \mathbb{E} \left[\int_{-\infty}^{\infty} e^{-itX} g(t) \, dt \right]
\]

\[
= \frac{12}{11} \int_{-\infty}^{\infty} e^{-ita_0} g(t) \mathbb{E} \left[e^{-itX'} \right] \, dt \quad \text{(writing } X' = X - a_0 \text{)}
\]

\[
= \frac{12}{11} \left| \int_{-\infty}^{\infty} e^{-ita_0} g(t) \mathbb{E} \left[e^{-itX'} \right] \, dt \right| \quad \text{(the quantity is already real and nonnegative)}
\]

\[
\leq \frac{12}{11} \int_{-\infty}^{\infty} |e^{-ita_0}| \cdot g(t) \cdot \mathbb{E} \left[e^{-itX'} \right] \, dt
\]

\[
\leq \frac{12}{11} \int_{-1}^{1} \mathbb{E} \left[e^{-itX'} \right] \, dt,
\]

where the last inequality used the fact that \(|e^{-ita_0}| \leq 1 \), \(g(t) = 0 \) outside \([-1, 1]\), and \(g(t) \leq 1 \) otherwise. But

\[
\mathbb{E} \left[e^{-itX'} \right] = \mathbb{E} \left[\exp \left(-it \sum_{j=1}^{n} a_j x_j \right) \right]
\]

\[
= \mathbb{E} \left[\prod_{j=1}^{n} \exp(-ita_jx_j) \right]
\]

\[
= \prod_{j=1}^{n} \mathbb{E}[\exp(-ita_jx_j)] \quad \text{(independence)}
\]

\[
= \prod_{j=1}^{n} \left(\frac{1}{2} \exp(-ita_j) + \frac{1}{2} \exp(+ita_j) \right)
\]

\[
= \prod_{j=1}^{n} \cos(a_j t).
\]
Substituting (2) into (1) and using \(\cos x \leq \exp(-\frac{1}{2}x^2) \) for \(x \in [-1, 1] \) (which can be seen from the Taylor expansion), we get

\[
\Pr[|X| \leq 1] \leq \frac{12}{n!} \int_{-1}^{1} \prod_{j=1}^{n} \exp \left(-\frac{1}{2} a_j^2 t_j^2 \right) \, dt
\]

\[
= \frac{12}{n!} \int_{-1}^{1} \exp \left(-\frac{1}{2} \sigma^2 t^2 \right) \, dt
\]

\[
\leq \frac{12}{n!} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} \sigma^2 t^2 \right) \, dt
\]

\[
= \frac{12\sqrt{2\pi}}{n!} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} u^2 \right) \, du \quad \text{(changing variables: } t = u/\sigma)\]

\[
= \frac{12\sqrt{2\pi}}{n!} \leq \frac{2.74}{\sigma}.
\]

\[\square\]

1.3 Citations

Here are 10 citations of papers I want to read: [DR04, DS05, Enf70, GT09, Guy89, Hat12, Hoe48, Kle66, KS88, NP00].

2 Conclusions

In conclusion, \(\heartsuit \).

Acknowledgments

The authors would like to thank Bob Tarjan, Les Valiant, Sasha Razborov, and Avi Wigderson for their careful proofreading of this manuscript.

References

