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Coverage of a Planar Point Set with Multiple
Robots subject to Geometric Constraints
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Abstract—This paper focuses on the assignment of discrete
points amongK robots and determination of the order in which
the points should be processed by the robots, in the presence
of geometric and kinematic constraints between the robots.This
is a path planning problem that arises as a subproblem in the
decoupled approach to solving the motion planning problem of
covering a point set by a multiple robot system in minimum
time. More concretely, our work is motivated by an industrial
microelectronics manufacturing system with two robots, with
square footprints, that are constrained to translate alonga line
while satisfying proximity and collision avoidance constraints.
The N points lie on a planar base plate that can translate along
the plane normal to the direction of motion of the robots. The
geometric constraints on the motions of the two robots lead to
constraints on points that can be processed simultaneously.

We use a two step approach to solve the path planning
problem: (1) Splitting Problem: Assign the points to the K

robots, subject to geometric constraints, to maximize the parallel
processing of the points. (2)Ordering Problem: Find an order of
processing the split points by formulating and solving a multi-
dimensional Traveling Salesman Problem (TSP) in theK-tuple
space with an appropriately defined metric to minimize the total
travel cost. We show that for K = 2, the splitting problem can
be converted to a maximum cardinality matching problem on a
graph and solved optimally in polynomial time. The matching
algorithm takes O(N3) time in general and is too slow for
large datasets. Therefore, we also provide a greedy algorithm for
the splitting problem that takes O(N log N) time. We provide
computational results comparing the two approaches and show
that the greedy algorithm is very close to the optimal solution
for large datasets. We also provide computational results for the
ordering problem and present local search based heuristicsto
improve the TSP tour. Further, we give computational results
showing the overall performance gain obtained (over a single
robot system) by using our algorithm. Finally, we extend our
approach to a K-robot system and give computational results
for K = 4.

Note to Practitioners—This paper presents techniques to plan
the motions of multiple robots to visit and process a given set
of points, subject to geometric constraints on the robot motions.
This point set coverage task is motivated by a laser drilling
application for electronics manufacturing. The goal is to minimize
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the time taken to visit the points by parallelizing the robot
operations while avoiding robot collisions. Similar tasksarise in
many applications including drilling, electronics manufacturing,
circuit testing, spot welding, and sensor network data collection.
We model the assignment of points in the plane to robots as a
matching problem and the point traversal order generation as
a Traveling Salesmen Problem. We present effective algorithms
to plan the motions of the robots for large data sets (involving
hundreds of thousands of points), and demonstrate the feasibility
of our approach for 2 and 4 robots.

Index Terms—Multiple-robot systems, point set coverage,
matching, K-TSP.

I. I NTRODUCTION

Robotic point set coverage tasks occur in a variety
of application domains like electronic manufacturing (laser
drilling [4], inspection [3], circuit board testing [22], [11]),
automobile spot welding [15], and data collection in sensor
networks [18]. The goal of using multiple robots in point set
coverage tasks is to reduce the overall task completion time
by parallelizing the operations at the points. The path planning
problem in such multi-robot point set coverage tasks can be
stated as follows:Given a point setS = {pi}, i = 1, . . . , N ,
and K robots, find an assignment of the points to individual
robots and determine the order in which the robots must visit
the points so that the overall task completion time is mini-
mized. In this paper we look at such path planning problems
for multiple robot point set coverage where the robots have to
(a) spend some time at each point to complete a task (we call
this time theprocessing timeof each point) and (b) satisfy
given geometric constraints (like collision avoidance) while
covering the point set. Our work is motivated by a system (see
Figure 1) used by a microelectronics manufacturer for laser
drilling. Here we need to process (drill) a set of points with
identical processing times by a system ofK(= 2) robots. The
architecture of the machine imposes the following geometric
constraints: (a) at any instant of time, each robot can process
exactly one point within a square region in the plane (called
processing footprint) although there may be several points
within the region, (b) the robots are constrained to move along
a line while avoiding collisions, and (c) the points lie on a base
plate that can translate along they-axis.

In the absence of the geometric constraints and assuming
the processing times to be zero, the path planning problem
for multi-robot point set coverage tasks can be treated as a
K-Traveling Salesman Problem (K-TSP). However the path
planning problem with inter-robot geometric constraints has
not received much attention in the literature. In this paper, we
provide solution algorithms to the path planning problem for
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point set coverage with multiple robots, where the robots are
subject to geometric constraints, and the processing time of
each point is identical. We divide the problem into that of
finding the assignment of points to each robot, and the order
in which they will be processed while satisfying the geometric
constraints as follows:
Splitting Problem: Let P be a set of subsets ofS of size
less than or equal toK such that each point inS can occur
in exactly one element ofP 1. The splitting problem is to find
a set P of minimum cardinality that respects the geometric
constraints such that each point inS occurs in exactly one
element ofP . Intuitively, such a set allows the maximum
possible parallelization of the processing operation.
Ordering Problem: Given a set ofK-tuples, P , find a
processing order of the points by the robots such that thecost
of visiting all the points is minimized.

The splitting problem can be reduced to a clique partitioning
problem [9] on a graph for arbitraryK and the ordering
problem can be reduced to a traveling salesman problem
(TSP) [1]. Both these problems are NP-hard. However, for
two robots (i.e.,K = 2) we show that the splitting problem
is equivalent to a maximum cardinality matching (MCM)
problem on a suitably constructed graph and can thus be
solved optimally in polynomial time. The maximum car-
dinality matching algorithm takesO(N3) time in general
([12], [14]) and is not suitable for large data sets (in our
application, approximately105 points). Therefore, we provide
a greedy algorithm that exploits the geometric nature of the
constraints and takesO(N log N) running time. We provide
results comparing the greedy algorithm with the matching
algorithm for small datasets. Our computational experiments
show that for typical industrial datasets the greedy algorithms
give solutions that are very close to the optimal solution.

We model the ordering problem as a multi-dimensional
TSP ([11], [22]) in the set of point pairs (pair space) obtained
from the splitting problem. The solution of this TSP gives tours
for the individual robots. We identify necessary conditions in
the tours of the individual robots that improves the tour in
the pair space. We provide results showing an improvement
of 5% to 8% in the TSP tour using the tour improvement
heuristic. To include points in the tour that were not paired
in the splitting stage we give a cheapest insertion heuristic.
We also give computational results showing the improvement
of performance obtained by using a two robot system and the
path planning algorithms described above over a single robot
system. Finally, we extend our algorithms for the two robot
system to aK robot system and provide some computational
results for a four robot system.

This paper is organized as follows: In Section II, we
briefly summarize the relevant literature. In Section III we
formulate the path planning problem for theK-robot system
and outline division of the problem into two subproblems.
In Section IV, we provide solution algorithms and results
for the two robot point splitting problem. In Section V, we
formulate the ordering problem as a TSP in the pair space and

1We will refer to each element ofP as aK-tuple with the understanding
that if there are less thanK points present in an element we add virtual points
to make its cardinality equal toK.
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Fig. 1. Schematic sketch of a 2-robot system used to process points in the
plane. The heads can translate along thex-axis and the base plate translates
along they-axis. The square region of length2∆ is the processing footprint
for each robot.

provide local search based heuristics to improve the tour. In
Section VI, we extend the algorithms for the two robot system
to a K-robot system. Finally, in Section VII, we present our
conclusions and outline future work. A preliminary versionof
this work appeared in [4].

II. RELATED L ITERATURE

The general motion planning problem for the minimum-
time multiple robot point set coverage problem can be stated
as follows:
Input : A set of pointsS = {pi} with processing timesτi,
i = 1, 2, . . .N , that must be processed byK robots where
each robot has a limited footprint and the robots must satisfy
given geometric, kinematic, and dynamic constraints.
Output : A trajectory for each robot satisfying the constraints
such that the total time (process time plus travel time) required
to cover the point set is minimized.
This is a hybrid discrete-continuous optimization problem
because we have to simultaneously optimize over (a) the
feasible discrete choices involved in the assignment of points
to the robots and the order in which the points are visited
by the robots, (b) the feasible continuous choices involvedin
specifying the position and velocity of the robots as a function
of time. The problem is hard to solve even forK = 1, even
without the geometric constraints.

There are two distinct approaches to solving hybrid discrete-
continuous optimization problems like the one above: (1) Form
a mixed integer nonlinear optimal control problem [20] or (2)
Use a two stage approach: (a) Solve the discrete optimization
problem of finding the path and (b) Solve the continuous opti-
mization problem of converting the path into a trajectory. The
first approach is very general although the resultant problem
is very hard to solve in practice. von Stryk and Glocker [20]
used this approach to find the trajectories of two cooperating
robots (cars), with given kinematic motion model, visitinga
set of points. They used a two level iterative scheme to find the
optimal trajectories. The outer level iteration used a branch and
bound framework to search the space of discrete variables (in
this case, the variables corresponding to assignment and order
of the points). The inner level iteration solved a nonlinear
optimal control problem over the space of continuous variables
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(in this case, the position and velocity of the robots). This
approach can require the solution of an exponential (in the
number of points to be visited) number of inner level nonlinear
optimal control problems, each of which is nontrivial to solve.
Hence, this approach is limited to a small number of points.

The literature for the second approach usually focuses
on either the discrete optimization problem of covering a
point set or the continuous optimization problem of trajectory
generation. The problem of covering a point set by a single
robot with collision avoidance constraints has been studied
for industrial robots [15], [21], [17], [2]. Sahaet al. [15], and
Wurll and Henrich [21] address motion planning of a fixed
base manipulator to process a set of points avoiding static
obstacles in the workspace. The points are assumed to be
partitioned into groups and the motion is assumed to be point-
to-point. In [17], Spitz and Requicha consider the point set
processing problem for a coordinate measuring machine. Since
there is only one robot, the processing time is constant and the
main focus of these papers is to find a minimum cost collision
free path covering all the points. The collision avoidance
problem is nontrivial in these cases and all of the above papers
use a discrete search of the configuration space ([15] and [17]
use different versions of probabilistic roadmaps whereas [21]
usesA∗ search) for computing a collision free path. On the
other hand, we have multiple robots and algebraic equations
that give collision avoidance constraints. Thus we focus on
assigning the points to the robots (to reduce processing time)
as well as obtaining an order of processing them (to reduce
traveling time) while avoiding collisions among the robots.

Dubowsky and Blubaugh (see [6], Section IV) considered
the problem of multiple manipulators processing a set of
points. However, they assumed that the manipulators will never
be in collision with each other and formulated the problem as
a K-TSP. Their solution approach was to find a tour for one
manipulator and then divide it intoK tours forK manipulators
such that the maximum of theK tour costs is minimized. Here,
we need to satisfy collision avoidance constraints, and such an
approach is not suitable.

III. PROBLEM FORMULATION

The motion planning problem for minimum time multiple
robot point set coverage can be formulated as a mixed integer
optimal control problem (see Appendix A). The solution of
this formulation, when it can be solved, gives the trajectories
of the K robots such that the overall time taken in covering
the point set is minimized. However, as observed in [20],
it is difficult to solve problems of this type directly and
this is especially true for the large datasets that we have
to deal with. Therefore, we follow the usual approach in
the robotic motion planning literature and divide the motion
planning problem into a path planning problem and trajectory
optimization problem. In this paper we are concerned with the
formulation and solution of only the path planning problem.
There are two main questions that arise in the formulation of
the path planning problem:

1) Do we need to incorporate the inter-robot geometric
constraints in the path planning problem?

2) What is a measure of the travel cost in the presence of
the inter-robot geometric constraints?

Before we proceed to answer the above two questions we
first look at the minimum cost path planning problem forK
robots, without geometric constraints, where the robots have
some processing time at each point. If the processing times are
all zero then the problem is equivalent to aK-TSP problem
defined below:
Given a weighted complete graph,G = (V, E), where the
set of verticesV consists of the set of all the points and the
weight on an edge is the travel cost between the two points,
find K subtours on this graph such that the cost of the most
expensive subtour (i.e., sum of weights of the edges in the
subtour) among theK subtours is minimized.

If the processing times are non-zero the problem can still be
set up as aK-TSP with suitable weights. LetS = {pi}, i =
1, . . . , N , be the point set that is to be processed in minimum
time by K robots where each robot has to spend timeτi at
pointpi. Let dij be the travel cost on the edge (i, j), τi, τj , be
the processing times of pointspi, pj respectively andw > 0
be an arbitrary positive number2. Define the new cost on the
edges as

d̄ij = dij +
w(ti + tj)

2
(1)

The solution of aK-TSP with the edge weights defined above
gives the tours for each robot such that the maximum sum
of processing cost and travel cost is minimized. Moreover,
if dij satisfies the triangle inequality then̄dij also satisfies
the triangle inequality. Consider three verticesi, j, k. From
Equation 1 we have:

d̄ij + d̄jk = dij +
w(ti + tj)

2
+ djk +

w(tj + tk)

2

= dij + djk + wtj +
w(ti + tk)

2

≥ dik +
w(ti + tk)

2
≥ d̄ik

(2)

Thus the new cost metric defined by Equation 1 satisfies the
triangle inequality. Therefore, we can use the algorithm given
in [8] to obtain a constant factor approximation algorithm for
the problem. The constant factor is5/2 if we use Christofides
algorithm to solve the1-TSP problem.

In the presence of inter-robot geometric constraints, the
solution obtained above by ignoring the constraints may be
arbitrarily bad, i.e., theK-TSP solution may result in no par-
allelization of the operations. We illustrate this with a simple
example. Figure 2 shows a simple input point distribution
where no two points lie simultaneously in the processing zone
of a single robot. Assume the geometric constraints on the
robot is the same as that in Figure 1. The bold line shows
the optimal paths of the two robots obtained ignoring the
geometric constraints. However, because of the constraints,
no two points assigned to the two robots in this solution can
be processed simultaneously and the time taken is the same
as that would be achieved by a single robot. Thus, solving a

2w is a problem domain dependent scale factor that accounts fordifferent
units that the travel cost and processing cost may have, e.g., travel cost may
have units of length whereas processing cost may have units of time.
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standardK-TSP ignoring the geometric constraints can give an
arbitrarily bad solution. Thus the answer to our first question
is that we indeed do need to take the inter-robot geometric
constraints into consideration at the path planning stage.To
answer the second question, we first note that in the presence
of geometric constraints the maximum cost subtour among the
K subtours is not the right measure of the overall cost. This is
because the inter-robot constraints imply that the robots may
not be able to simultaneously traverse parts of their own tours.
The total travel cost incurred for task completion in this case
is the sum of the simultaneous travel costs of the robot and
the individual travel cost of the robots (i.e., costs of parts of
the tour where they cannot move simultaneously).

Fig. 2. An example input distribution of points where the bold lines show
an optimal2-TSP tour on this set obtained ignoring the geometric constraints.
Clearly, the two robots for the system in Figure 1 cannot process any pair of
points simultaneously while satisfying the geometric constraints.

Although we need to take care of the inter-robot collision
avoidance constraints, it is not clear how to do that at the path
planning stage because these constraints should be satisfied
at all times whereas there is no time information in the
path planning problem. Therefore, we pose the path planning
problem in the space ofK-tuples of points and define the
feasible pathfor this problem in theK-tuple space as follows:
A feasible path is defined as an ordered set of tuples of points
of size less than or equal toK such that the robots satisfy the
inter-robot geometric constraints if they are present at points
in the same tuple. The path in theK-tuple space induces a path
in the Euclidean space for each robot. This definition ensures
that when the robots move along their respective paths, they
would satisfy the geometric constraints if they are at the points
belonging to the same tuple at the same time. Thus, once we
have an ordered set of tuples, we can ensure that the geometric
constraints are satisfied when moving along the path by writing
the constraints as simple velocity constraints of the robots in
the point-to-point motion trajectory optimization problem. To
solve the above path planning problem, we take the following
two step approach:

1) Divide the set of points intoK-tuples of points that
satisfy the geometric constraints and assign the points
in each tuple to a robot.

2) Find the order in which the tuples should be processed
by the robots (this produces a tour for each robot on the
set of points assigned to it).

We can also view the two step approach as follows: we first
find a collection of points that can be processed simultane-
ously, thus obtaining an optimal solution for the processing
time and then we find a travel path for the robots that
minimizes the travel cost without changing the processing
cost. Therefore, in cases where the processing time dominates

the travel time this approach will give a good solution to the
overall problem.

IV. SPLITTING PROBLEM

In this section we look at the splitting problem for the two
robot system shown in Figure 1. The splitting problem consists
of assigning the set of points to the robots so as to maximize
the number of points that can be processed together. We call
a pair of points acompatible pair (of points)if they can be
processed together while respecting the geometric constraints.
Any two compatible pairs are called adisjoint compatible pair
if the points belonging to the two pairs are distinct. Thus, the
splitting problem is equivalent to minimizing the total number
of disjoint compatible pairs and singletons while assigning
them to the robots. A solution to this problem ensures the
maximum parallelization of the processing operation. The
formal statement for this problem is given below:
Problem Statement: Let S = {pi} = {(xi, yi)}

N
i=1, be

a set of points inR
2. Let P be a set ofordered sub-

sets of S of size less than or equal to2 that partitions
S, i.e., P = {(pi,pj)}

⋃

{(pk, ∗)}
⋃

{(∗,pl)}, i, j, k, l ∈
{1, 2, . . . , N}, i 6= j 6= k 6= l, where∗ denotes avirtual point
and any pair(pi,pj) ∈ P respects the following constraints

|xi − xj | ≥ smin − 2∆

|yi − yj| ≤ 2∆
(3)

wheresmin is the minimum distance between the two robots.
Find such aP of minimum cardinality.

In the above statement the ordered pair(pi,pj) denotes thatpi

is assigned to robot1 andpj is assigned to robot2. Moreover
(pk, ∗) denotes thatpk is a singleton assigned to robot1,
while (∗,pl) denotes thatpl is a singleton assigned to robot
2. The constraint between thex-coordinates of the points in
Equation 3 ensures collision avoidance between the robots.
The constraint on they-coordinates indicate that the robots
are constrained to move along thex-axis but have a square
footprint for processing.

A. Optimal Algorithm

The problem above can be solved optimally by converting
it to a maximum cardinality matching problem on a graph.

Definition Let G = (V, E) be a graph whereV is the set of
vertices andE is the set of edges. A setM ⊆ E is called a
matchingif no two edges inM have a vertex in common.M
is called amaximal matchingif there is no matchingM ′ such
that M ⊂ M ′. M is called amaximum cardinality matching
(MCM) if it is a maximal matching of maximum cardinality.

Definition A vertex in V is called amatched vertexif there
is one edge incident upon it inM , otherwise it is called an
unmatchedor exposed vertex.

From the given set ofN input points,S, we construct a
graphG = (V, E), whereV is the set of all points andE is
the set of all edges with an edge existing between two points
iff they form a compatible pair, i.e., they satisfy Equation3.
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We call this graph thecompatibility graphof the point set.
A maximum cardinality matching on the compatibility graph
gives the maximum number of disjoint compatible pairs, i.e.,
the maximum number of points that can be processed together.
The unmatched vertices form the singletons that are to be
processed individually. The setP consisting of the matched
pairs and unmatched vertices will be of minimum cardinality
since the number of singletons are minimum. After we obtain
the matching solution, we can use the geometry of our problem
to assign the points to the robots. In our problem, robot1 is
always constrained to be on the left of robot2. Therefore, we
order the pairs in the matching so that the point with lower
x-coordinate is on the left and thus gets assigned to robot1.
For the singletons, we assign points on the left of the median
of the point distribution to robot1 and points on the right to
robot 2.

The MCM problem on a graph is a well studied combina-
torial optimization problem and can be solved inO(N3) time
(Edmonds [7]). However, slightly faster algorithms do exist
(e.g., Micali and Vazirani’sO(

√

|V ||E|) algorithm [13]). In
our application,N can be of the order of105 and the matching
algorithm is not practical for such large values ofN . Hence
we provide a greedy algorithm that gives a suboptimal solution
and runs inO(N log N) time. We note that although there are
greedy algorithms in the matching literature that have linear
running time in the number of edges (see [19], and references
therein), such algorithms assume the input to be available in
the form of a graph. In our problem, the input is a set of points,
S, and the parameters∆ and smin specifying the geometric
constraints. Hence, we need to construct the input graph from
this information and this may takeO(N2) time in the worst
case.

B. Greedy Algorithm

Given the set of input points,S, and the parameters,∆
and smin, we use the geometric structure of our constraints
and the distribution of the input points to design a greedy
algorithm. We first divide the points along they-axis into
bands of width2∆ and then divide the points within each
band into two almost equal halves using the median of thex-
coordinates of the points in the band. Then starting from the
left most point of the left half, we pair each point in the left
half with a compatible point in the right half with minimum
x-coordinate, breaking ties by choosing points with minimum
y-coordinate. This is the best possible local choice for a point
in the sense that this choice leaves the maximum number of
compatible points on the right half for the remaining pointson
the left half. Algorithm 1 gives a detailed description of our
greedy heuristic. The main computational cost in the algorithm
is the sorting of the points according to theiry coordinates at
line 3 of Algorithm 1. Hence, the algorithm has a theoretical
worst case running time ofO(N log N).

We have divided the points into horizontal bands and then
divided each horizontal band into two halves. These two
choices imply that for every point we are restricting our choice
of the points it can be paired with (or we are restricting the
set of neighbors in the compatibility graph). Theoretically, this

Algorithm 1 Greedy algorithm for 2 robots
1: Input: Vector of x and y coordinates of points,x, y;

Parameterssmin, ∆. [x, y] denotes the concatenated
vectorsx and y.

2: Output: Set P of subsets of S of cardinality≤ 2 that
partitions S.

3: [x, y] = ysort(x, y); // Sort according to y-coordinates
4: ymin = minimum(y); ymax = maximum(y);
5: numbands = ⌈ ymax−ymin

2∆ ⌉ // Number of bands
6: for i = 0 to numbands− 1 do
7: [u, v]← Points withy−coordinates in the range (ymin+

2i∆, ymin + 2(i + 1)∆)
8: [u, v] = xsort(u, v)
9: udiv = xmedian(u) // Median ofx−coordinates

10: umin = minimum(u); umax = maximum(u);
11: if |udiv − umin| < smin then
12: udiv ← umin + smin

13: end if
14: [ul, vl] ← Points with x−coordinates in the range

(umin, udiv)
15: [ur, vr] ← Points with x−coordinates in the range

(udiv, umax)
16: for j = 1 to length(ul) do
17: k ← Index of point on right hand side that has

minimumx−coordinate among all points that respect
the constraints. If there is more than one such point
we take the one with the minimumy−coordinate.

18: if such ak existsthen
19: P← P

⋃

{((ul[j], vl[j]), (ur[k], vr[k]))}
20: else
21: P← P

⋃

{((ul[j], vl[j]), ∗)}
22: end if
23: end for
24: end for
25: L← Set of indices of unassigned points on right side
26: P← P

⋃

{(∗, (ur[k], vr[k]))}, ∀k ∈ L
27: return P

may seem to be troublesome and one can devise inputs where
this scheme will perform badly. However, for the practical
inputs this scheme works very well as shown in Table I. More-
over, one can also deal with this by repeating the algorithm
with different startingy-coordinates for the bands between
ymin and ymin + 2∆ and taking the best result among them.
Another alternative is that instead of dividing the point sets,
we consider for each point all the possible unassigned points it
can be paired with and use the same criterion as in Algorithm 1
for choosing a partner for this point. This algorithm is a
special case of the greedy algorithm for matching where we
pick one edge at random from the graph, remove all edges
corresponding to the picked vertices and then pick another
edge from the graph. The ratio of the number of edges in
the optimal matching to the number of edges returned by this
algorithm is upper bounded by2. Thus the ratio of the total
processing time of the points paired with this algorithm to the
optimal processing time is3/2 assuming a constant processing
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TABLE I
PERFORMANCECOMPARISON OFSPLITTING BETWEEN GREEDY AND

MATCHING ALGORITHM

Greedy Algorithm Matching Algorithm
Number Number Number Time Number Number Time

of of of (sec) of of (sec)
points pairs singletons pairs singletons
1396 695 6 0.45 696 4 5
11109 3029 5051 0.97 4137 2835 94
27810 13840 130 5.17 13905 0 1528
135300 67649 2 107
167536 83739 58 172
181758 90866 26 217
198570 99279 12 246
211856 105845 166 288

time for each point. However, in experiments on the practical
datasets this algorithm performs worse than Algorithm 1 and
takes more time. A working scheme that can be used is to run
both the algorithms and take the best of the two. This ensures
that we always have a splitting result that is practically good
and also has a worst case theoretical bound.

C. Results

The results of using both the greedy algorithm and optimal
(matching) algorithm for the splitting problem, along withthe
corresponding running times, are shown in Table I. The value
of the parameters used for obtaining the results are∆ = 8
mm, smin = 96 mm. We have used an implementation of
Edmond’s algorithm available in the Boost Graph Library [16]
to solve the MCM problem. The datasets used represent typical
datasets that are used in the industry. Table I shows that
for smaller datasets (say less than30000 points), although
the matching algorithm performs better, the running time is
much higher and hence it is not practical to use it for large
datasets. In fact, the Boost Graph implementation fails for
large datasets (resulting in the blanks in Table I for larger
datasets). Moreover, our computational experiments (lastfive
rows of Table I) show that the ratio of the number of singletons
to the number of points is very small, hence for practical
purposes the greedy algorithm performs quite well. Figures3
and 4 show two example datasets and the assignment of paired
points to the two robots. The units of length on the two axes
are microns. In Figure 4, the spread of the dataset along the
x-axis is approximately120 mm. As the minimum distance
to be maintained between the two robotssmin = 96 mm, we
cannot process most of the points in parallel and consequently
there are a large number of singletons in the middle.

V. ORDERING PROBLEM

In this section we present algorithms to find an order of
processing the points that minimizes the travel cost while en-
suring that the compatible points are processed simultaneously.
We formulate the problem as a multi-dimensional TSP (such
TSP’s also arise in the circuit testing literature [11], [22]). We
use a three step approach to solve this problem:(1) Find a
path through the compatible pairs by solving a TSP on the
set of point pairs (pair space). The solution of this TSP in the
pair space induces a tour for each robot inR

2. Note that even
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Fig. 3. Splitting and assignment of points by greedy algorithm for the dataset
of 1396 points.
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Fig. 4. Splitting and assignment of points by greedy algorithm for the dataset
of 11109 points.

if we find the optimal tour in the pair space the optimality is
with respect to the given pairing of the points and it may be
possible that anotherfeasiblepairing of the same cardinality
gives a better tour.(2) Use a local search heuristic in the tour
of each robot to find a better tour in the pair space while
respecting the constraints.(3) Incorporate the singletons to
be processed by each robot in this tour by using acheapest
insertion heuristic.

A. TSP in Pair Space (PTSP)

For formulating the TSP in the pair space or pair TSP
(PTSP) we have to first define a metric in the pair space
between two pairs that is meaningful to our problem. Since
the relative motion of the robot and the points are constrained
to be only along thex-axis andy-axis, a natural measure of
distance,dij , between two points[(xi1, yi1), (xi2, yi2)] and
[(xj1, yj1), (xj2, yj2)] in the pair space is given by:

max(|xi1 − xj1|, |xi2 − xj2|, |yi1 − yj1|, |yi2 − yj2|) (4)
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This distance gives the cost incurred for robot1 to reach
(xj1, yj1) from (xi1, yi1) and robot2 to reach(xj2, yj2) from
(xi2, yi2) simultaneously. This distance measure is symmetric
and satisfies the triangle inequality. The formal problem state-
ment for PTSP can thus be written as:
Problem Statement: Given a set of pairs of points,P =
{[(x1, y1), (x2, y2)]i}

m
i=1, and a distance defined on the pairs

by Equation 4, find a minimum cost tour on the weighted
complete graphG = (V, E), where V = {1, 2, . . . , m}
indexes the elements ofP and weights on the edges in set
E are distances between the pairs.
We note that this problem formulation has the implicit as-
sumption that the two robots start traveling from one pair
at the same time toward the next pair and they leave the
next pair only when both of them have finished processing,
i.e., one robot cannot travel while the other is processing.
This ensures that the two robots travel while satisfying the
geometric constraints if they travel between the points with the
same velocity. The cost obtained is thus an upper bound on
the travel cost (as defined in Section III) and can be improved
using more sophisticated trajectory optimization schemes. The
TSP is an NP-hard problem and, in general, it is not even
possible to get a solution within a constant factor of the
optimal solution [9]. However, in our case the distance metric
is symmetric and satisfies the triangle inequality. For this
case, there are polynomial time heuristics some of which
guarantee a solution within a constant factor of the optimal
solution. A few popular heuristics for solving the TSP [10]
are (a) Nearest Neighbour heuristic(b) Insertion heuristics
(c) Minimum Spanning Tree (MST) heuristic(d) Christofides’
heuristic(e) Lin-Kerninghan heuristic. The heuristics(a), (b),
(c) and (d) are usually used to construct a tour from scratch
whereas(e) is used to improve a given tour. An alternative
approach is to solve an integer program formulation of the
TSP with a cutting plane method [5]. However, these methods
tend to be more computationally expensive. The practical
algorithms for TSP with triangle inequality use a combination
of these methods to solve the problem. In this paper, we
use the TSP solver Concorde [1] to solve the PTSP, which
has implementations of the above heuristics as well as the
cutting plane method. For the results in this paper, we used the
Quick-Boruvka heuristic to compute a tour from scratch and
the chained Lin-Kerninghan heuristic to improve the tour. We
have observed from our computational experiments that when
using a different heuristic (say nearest neighbor heuristic) to
compute the initial tour even though the initial tour lengths
may be different the improved tour lengths did not have any
significant differences.

B. Order Improvement Heuristic

As discussed before, even if we get an optimal tour of the
PTSP, the optimality of the solution is with respect to the
chosen compatible pairs and it may be possible to improve the
tour length by changing the point pairings. We have observed
that the individual TSP tours induced by the PTSP tour contain
self-crossings (i.e., the tour intersects itself). We notethat
although the Lin-Kerninghan tour improvement heuristic is

c1
2

34

a

bd

Fig. 5. The left figure shows the TSP tour of robot1 whereas the right
figure shows the self crossings observed in the TSP tour of robot 2. The initial
pairings were (1,a), (2,b), (3,c), (4,d) whereas the new pairing in the lower
cost tour is (1,a), (2,c), (3,b), (4,d), provided the new pairs are compatible.

intended to remove such crossings, in our problem it does
so in the pair space. Therefore, we can further improve the
PTSP tour by removing the self-crossings in the individual
TSP tours of the robots provided the constraints are satisfied.
This removal of self-crossings is equivalent to changing the
pairing among the points. Figure 5 shows a simple example
of a crossing in the TSP tour of robot2. The initial pairings
are given by(1, a), (2, b), (3, c), (4, d). If the pairings(2, c)
and (3, b) are feasible then we obtain a new tour in the pair
space given by{. . . , (1, a), (2, c), . . . , (3, b), (4, d), . . . }. Thus
the removal of self-crossings inR2 correspond to changing the
pairings among the points.

Note that for a TSP inR2, when using the max metric,
removal of a self-crossing is a neccessary but not sufficient
condition for improving the tour cost (whereas for Euclidean
metric it is both a neccessary and sufficient condition). Fur-
thermore, in our PTSP formulation, the cost between two
consecutive points is determined by one of the two robots.
Thus, if the crossing occurs in the tour of the other robot
we will not improve the overall tour cost by removing it,
although the tour cost of the individual robot may improve. For
example, if the cost between the pairs(1, a) and (2, b) given
by Equation 4, is determined by the distance between points
1 and 2 then removing the self-crossing doesn’t improve the
overall tour cost although it may improve the individual tour
cost of robot2.

We implemented this order improvement heuristic in C++
where we consider two sets of two consecutive pairs. The
number of pairs between the two sets,i.e., between(2, b)
and (3, c) in Figure 5 is a parameter (saykc) that we can
set. We first use the heuristic on the tour of robot2 and
then use it on the tour of robot1; reversing the order did
not give any significant difference in results. Table II shows
the results of solving the TSP in the pair space. We computed
the initial tour using the Quick-Boruvka method and then used
chained Lin-Kerninghan heuristic to improve the tour. For both
of these we used the implementations available in the TSP
solver Concorde [1]. However, the distance function for this
multi-dimensional TSP is not available within Concorde and
we had to implement our own distance function. The running
times were less than400 seconds for all the cases. For the tour
improvement heuristic, we chose the parameterkc = 5000.
The running time is dependent on the value ofkc and we did
not see any substantial improvements in the tour cost with
higher kc. We observe an improvement of5% to 8% in the
tour cost using our tour improvement heuristic on the tested
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datasets and the running times are less than600 seconds. All
the run times are obtained on a IBM T43p laptop (2.0 GHz
processor, 1GB RAM). The final improved tour cost is given
in the last column of Table II.

TABLE II
TSPTOUR OBTAINED IN PAIR SPACE WITH IMPROVED COST GIVEN BY THE

ORDER IMPROVEMENT HEURISTIC

Number of Quick Boruvka Lin Kerninghan Improved Tour
pairs Tour Cost (m) Tour Cost(m) Cost (m)

67649 124.428 110.343 103.289
83739 140.898 124.091 115.462
90866 121.523 106.434 100.253
99729 165.527 148.353 140.162
105845 150.255 132.048 121.911

C. Singleton Insertion Heuristic

We incorporate the singleton points for each robot in its
individual tour induced by the PTSP tour using a cheapest
insertion heuristic, i.e., we insert a point in the tour so that
the total increase in the tour cost is minimum. Leti = (i1, i2)
andj = (j1, j2) be two consecutive pairs where the subscript
1 denotes that the point is to be processed by robot1 and
subscript2 is for robot2. Let k1 be a point to be inserted in
the tour of robot1. Suppose that we want to insertk1 between
i1 and j1. If (k1, i2) do not form a compatible pair, we find
the minimum distance move to be made by robot2 to a point
compatible withk1. Otherwise, the second robot may stay at
the same place. Letk2 be the point at which we have the
robot2 when robot1 is at k1. The increase in the cost of the
tour due to the insertion of pointk1 betweeni1 andj1 is then
Ci1k1 + max(Ck1j1 , Ck2,j2) − max(Ci1j1 , Ci2j2) where Cpq

denotes the distance given by max metric between pointsp
andq. We want to insertk1 such that this tour cost increase is
minimum. For each singleton, this is a linear time algorithm.

D. Evaluation of the Algorithm

In Section III we presented the path planning problem
formulation wherein we proposed to divide the problem
into two subproblems, namely, the splitting problem and the
ordering problem. Thereafter, in the next two sections we
provided algorithms for solving the two problems and provided
simulation results showing the performance of the individual
algorithms on example datasets. In this subsection we attempt
to answer the following question: How good is the overall
algorithm? The ideal answer to this question is a theoretical
bound on the ratio of the cost of optimal solution to the cost
of the solution of this algorithm. However, we currently do not
have any such guarantees. An alternative approach, especially
useful to practitioners, is to compute the performance gain
achieved in using aK-robot system over a single robot system.
Here we provide simulation results that show the performance
gain achieved in using a two-robot system over a single robot
system.

The cost of the path for any robot is the sum of the travel
cost (Tt) to visit the points and the processing cost (Tp) of
processing the points on the path (which is proportional to

the number of points, assuming constant processing time).
However, the measurement unit of the travel cost is that of
length and the unit of processing cost is time in our problem
formulation. So we need a weight factor between the two costs
that depends on the relative importance of the two costs. We
can define the performance gain obtained in using aK-robot
system over a single robot system as:

Performance Gain = w
T

(1)
p

T
(K)
p

+ (1 − w)
T

(1)
t

T
(K)
t

(5)

wherew is the weight factor (1 ≥ w ≥ 0) and the superscript
denotes the number of robots used.

Table III shows the performance gain achieved by using
a two robot system over a single robot system using the
algorithm described in this paper. We have assumed that
w = 0.5 or the total travel time and total processing time
are equally weighted. The processing cost for the single robot
is proportional to the number of points whereas the processing
cost of the two robot system (given in the second column of
Table III) is proportional to the sum of the number of pairs
plus singletons (given in Table I). The ratio of these two costs,

i.e.,
T (1)

p

T
(2)
p

is nearly2. The third column in Table III gives the

travel cost of the two robot system whereas the fourth column
gives the travel cost of the single robot system (obtained
by using the Concorde implementation of the Lin-Kernighan
heuristic on a Quick-Boruvka initial tour [1]). The travel cost
of the two robot system is slightly higher than the travel cost
of the single robot system. We believe that this is due to a
combination of the following facts: (a) we have designed the
whole algorithm on first minimizing the total processing cost
while satisfying the constraints and then minimizing the travel
cost while keeping the processing cost fixed, (b) we have an
implicit assumption that one robot cannot travel while the other
is processing, which can make one robot wait even when it can
move. However, as the last column demonstrates, we still have
a significant gain in the overall performance. In light of the
point (b) above, we can also view this gain as a lower bound on
the performance gain. Note that the performance gain is also
dependent on the value ofw. If w ≈ 1, i.e., the processing cost
dominates the travel cost, our algorithm performs very well.
On the other hand, ifw ≈ 0, i.e., the travel cost dominates
the processing cost, the algorithm performs poorly.

TABLE III
OVERALL PERFORMANCE GAIN ACHIEVED BY USING A2-ROBOT SYSTEM

OVER A SINGLE ROBOT SYSTEM. SEE TEXT FOR DETAILS.

Num. of Processing 2-Robot Travel 1-Robot Travel Performance
points Cost Cost (m) Cost (m) Gain
135300 67651 103.289 93.535 1.453
167536 83797 115.462 97.329 1.42
181758 90892 100.253 86.828 1.43
198570 99291 140.162 125.365 1.447
211856 106011 121.911 98.219 1.40

VI. EXTENSION TOK -ROBOT SYSTEMS

In this section we extend our splitting and ordering algo-
rithms for the two robot system to aK-robot system. For aK-
robot system the splitting problem can be set up as partitioning
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the compatibility graph of the points into the minimum number
of cliques of size less than or equal toK. This is a modification
of the NP-hard clique partitioning problem [9], the difference
being the presence of a bound on the maximum size of the
clique in our case. Consequently, it is unlikely that there is a
polynomial time optimal solution to this problem. Therefore
we present here the extension of the greedy algorithm to the
K-robot case.

A. Splitting Algorithm

We first define theK-robot splitting problem formally. For
concreteness, we use our motivating problem in Figure 1
to represent the geometric constraints. We assume that the
architecture is such that theK robots are mounted on the
gantry in Figure 1 and each robot has independent actuation
along the x-axis. The problem statement for the splitting
problem is thus:
Problem Statement: Let S = {pj} = {(xj , yj)}, j =
1 . . .N , be a set of points inR2. Let Q = {Qi} =
{[(x1, y1), (x2, y2), (x3, y3), . . . , (xL, yL)]i}, i = 1, . . . , Nq,
be aorderedset ofL−tuples,L ≤ K such thatQi ∩Qj = φ,
each point inS is present in a tuple inQ, and the points in
each element ofQ respect the following constraints

xli − xmi ≥ smin − 2∆, l, m ∈ {1, . . . , L}, l > m

maxk=1...L{|yki −
1

L

K
∑

k=1

yki|} ≤ ∆
(6)

Find such aQ of minimum cardinality.

The constraints on thex-coordinates ensure collision avoid-
ance and the constraints on they-coordinates indicate that
the robots are constrained to move along thex-axis but have
a square footprint for processing. The greedy algorithm for
the 2-robot case can be extended to theK-robot case in a
straightforward fashion. The main steps of the algorithm are
as follows:

• Sort the points according to theiry-coordinates and divide
the points into bands of height2∆.

• For each band divide the points into almost equalK zones
usingK medians of the band. Number the zones1 to K
from left to right.

• Then starting with the leftmost available point in zone
1 at the first position in each tuple, assign a point to
the kth position in the tuple if there is a point in zone
k that satisfies the constraints, where1 < k ≤ K. If
there is more than one such point, choose the one with
minimum x-coordinate breaking ties with the minimum
y-coordinate. If there are no such points, then add a
virtual point at thekth position.

• Repeat until all points are assigned.

The performance of this algorithm on the example datasets,
shown in Table IV, shows that we obtain a very good splitting
of the points among the robots. The datasets used are the same
as that for the two robot case, andsmin and∆ are96 mm and
8 mm respectively.

TABLE IV
GREEDY ALGORITHM RESULTS FOR FOUR-HEAD MACHINE ON EXAMPLE

DATA FILES

Num. of Num. Num. Num. Num. Total num.
points of quads of triples of pairs of singles of tuples

167536 41874 5 10 5 41894
198570 49632 6 9 6 49653
211856 52954 7 5 9 52975
135300 33792 29 8 29 33858
181758 45398 5 57 37 45497

B. Ordering Algorithm

The setQ obtained as a result of the splitting problem
consists of point tuples of size less than or equal toK. We
set up the ordering problem as a multi-dimensional TSP in
the K-tuple space, similar to the two robot case. Thereafter,
we use the tour improvement heuristic to improve the tour by
interchanging the points in theK-tuple space. The tuples of
size less than or equal toK are then inserted into the tours
of the robots using the cheapest insertion heuristic described
previously. The distance between two K-tuples, sayi and j,
is a generalization of the definition forK = 2 and is defined
as

max{|xik − xjk|, |yik − yjk|}
K

k=1 (7)

where (xik, yik), (xjk, yjk) are the the coordinates of the
points in thekth positions of theK-tuplesi andj respectively.
The tour improvement heuristic and the heuristic for inserting
tuples of size less thanK are direct extensions of the heuristics
for the two robot system. For improving the tour cost while
not changing the processing cost, we first identify the self-
crossings in the tours of an individual robot and then try
to interchange the order of the points assigned to that robot
to achieve reduction in travel cost. For incorporating a tuple
with l elements (l < K), we compute the insertion costs in
the l-tuple space. The same concept and formula as used in
Section V-C is used for determining the order of the tuples in
the tour.

Table V shows the processing cost, the travel cost, and
the overall performance gain achieved by using a four robot
system over a single robot system. The second and third
columns give the processing and travel cost respectively for
the four robot system. The definition of performance gain is
the same as given in Section V-D. Similar to the two robot case
we see here that there is a substantial gain in the processing
cost (the ratio of the second column to the first column in
Table V is almost4 for each case). However, the travel cost
is worse in some cases (the ratio of travel cost in the third
column and second, fourth and fifth rows of Table V to the
travel cost in forth column and same rows is greater than1)
although we have an overall performance gain in all cases.
Note that this performance gain is a conservative estimate and
can be thought of as a lower bound on the performance gain
that can be achieved.

VII. C ONCLUSION

In this paper we presented algorithms for path planning
of a constrainedK-robot system to cover a set of points in
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TABLE V
OVERALL PERFORMANCE GAIN ACHIEVED BY USING A4-ROBOT SYSTEM

OVER A SINGLE ROBOT SYSTEM

Num. of Processing 4-Robot Travel 1-Robot Travel Performance
points Cost Cost (m) Cost (m) Gain
135300 33858 31.482 93.535 3.48
167536 41894 136.691 97.329 2.35
181758 45497 54.079 86.828 2.8
198570 49653 159.197 125.365 2.39
211856 52975 147.153 98.219 2.33

the plane. There are two relative degrees of freedom between
the robots and the points, and each robot can process one
point at a time within its processing footprint. The process-
ing times for each point are assumed to be identical. We
divided the path planning problem into two subproblems of
splitting (and assigning) the points to each robot, and then
determining an order of processing the points so that the
overall tour cost is minimized. We showed that for two robots,
the splitting problem can be solved optimally by converting
it into a Maximum Cardinality Matching problem on a graph.
However, the matching algorithm is too slow for large datasets
and we developed a suboptimalO(N log N) greedy algorithm
that exploits the geometric structure of our problem. For the
ordering problem we first formulate and solve a TSP in the
pair space (PTSP). We then improve the solution of the PTSP
by identifying necessary conditions (self-crossings) fortour
improvement on the (PTSP induced) tours of the individual
robots. We also give a cheapest insertion heuristic on the pair
space to incorporate the singletons in the ordering algorithm.
We provide computational results showing the performance
gain achieved by a two robot system using our algorithm
over a single robot system. Finally, we generalize our splitting
and ordering algorithms toK-robot systems and provide
computational results showing their performance on typical
industrial datasets forK = 4.

The division of the overall path planning problem into a
splitting problem and ordering problem makes the problem
tractable. However, this approach can lead to a suboptimal
solution. An important question for the future is to obtain
theoretical bounds on the worst-case performance of this solu-
tion procedure. In ongoing work, we are exploring extensions
to systems where the processing time at each point may be
different.
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APPENDIX A

We present here the mixed integer optimal control formu-
lation of the minimum time multiple robot point set cover-
age problem. Although we do not use this general problem
formulation in our paper, we include it here for complete-
ness. Let there beK robots that have to visit a point set
S = {pi}, where they have to perform some task that takes
time τi, i = 1, . . . , N . Let qk(t) be the state of thekth robot
at time t and q̇k = fk(qk,uk) be the state update equation,
whereuk is the time dependent control input. Let

ωijk =

{

1 if robot k visits point i at time tj ,

0 otherwise
(8)

where tj , j = 1, . . . , N , are the (unknown) times when the
robots reach a point inS. The mixed integer optimal control
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problem is given by

Minimize tf

s.t.: q̇k = fk(qk,uk), k = 1, . . . , K (9)
N

∑

j=1

K
∑

k=1

ωijkqk(tj) = pi, i = 1, . . . , N (10)

N
∑

j=1

K
∑

k=1

ωijkqk(tj + ατi) = pi, (11)

∀α, 0 < α ≤ 1, i = 1, . . . , N
N

∑

j=1

K
∑

k=1

ωijk = 1, i = 1, . . . , N (12)

N
∑

i=1

N
∑

j=1

ωijk = 1, k = 1, . . . , K (13)

N
∑

i=1

N
∑

j=1

K
∑

k=1

ωijk = N (14)

N
∑

i=1

K
∑

k=1

ωijk ≤ K, j = 1, . . . , N (15)

h(q1,q2, . . . ,qK) ≤ 0 (16)

g(u1,u2, . . . ,uK) ≤ 0 (17)

tj ≤ tf , j = 1, . . . , N (18)

whereh(.) and g(.) are vector-valued vector functions rep-
resenting constraints on the states (e.g., geometric constraints
like inter-robot collision avoidance) and control inputs respec-
tively. In addition, we can also include any constraints on the
initial and final states of each robot. Equation 9 states that
the state evolution of the robots should obey the dynamics
constraints. Equation 10 states that for each pointpi there is
exactly one robotk that visits the point at some time, saytj ,
and Equation 11 states that the robot has to stay at the pointi
for time τi to complete the task. Equation 12 states that each
point should be visited only once and Equation 13 implies
that a robot can only be at one particular point at a time.
Equation 14 states that the total number of points that have to
covered by all the robots isN whereas Equation 15 implies
that at a given timetj , at mostK points can be processed.


