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Abstract: We review three recently proposed scan statistic methods for multi-
variate pattern detection. Each method models the relationship between multi-
ple observed and hidden variables using a Bayesian network structure, drawing
inferences about the underlying pattern type and the affected subset of the
data. We first discuss the multivariate Bayesian scan statistic (MBSS) pro-
posed by Neill and Cooper (2008). MBSS is a stream-based event surveillance
framework that detects and characterizes events given the aggregate counts
for multiple data streams. Next, we describe the agent-based Bayesian scan
statistic (ABSS) proposed by Jiang and Cooper (2008). ABSS performs event
detection and characterization given individual-level data for each agent in a
population. Finally, we review the Anomalous Group Detection (AGD) method
proposed by Das, Schneider, and Neill (2008). AGD is a general pattern detec-
tion approach which learns a Bayesian network structure from data and detects
anomalous groups of records.

Keywords and phrases: Pattern detection, event detection, scan statistics,
Bayesian networks, biosurveillance

1.1 Introduction

In this chapter, we focus on the problem of multivariate event surveillance, in
which we monitor multiple data sources with the goal of identifying patterns
that correspond to emerging events. More generally, our goal is pattern de-

tection: we wish to find subsets of a large, complex dataset that are relevant,
either because the group of data records corresponds to some known statistical
pattern which we are interested in detecting, or because it is highly anomalous
given our current understanding of the data. Here we review three recently pro-
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posed Bayesian variants of the spatial scan statistic [Kulldorff (1997)], which
extend the scan statistic methodology to enable rapid detection and accurate
characterization of events in multivariate datasets. The three methods include
the multivariate Bayesian scan statistic (MBSS) method proposed by Neill and
Cooper (2008), the agent-based Bayesian scan statistic (ABSS) method pro-
posed by Jiang and Cooper (2008), and the Anomalous Group Detection (AGD)
method proposed by Das, Schneider, and Neill (2008). MBSS is a stream-based
event surveillance framework that detects and characterizes events given the ag-
gregate counts for multiple data streams, while ABSS performs event detection
and characterization given individual-level data for each agent in a population.
Finally, AGD is a general pattern detection approach which detects anomalous
groups of records in categorical datasets. These methods use Bayesian net-
works to model the relationship between multiple observed variables, extending
the univariate Bayesian spatial scan statistic methodology of Neill et al. (2006)
to integrate multiple data streams and differentiate between multiple types of
event. MBSS and ABSS assume fixed Bayesian network structures, focusing on
stream-based and agent-based event surveillance scenarios respectively, while
AGD learns the Bayesian network structure from data and can be applied to
pattern detection in general multivariate datasets.

1.1.1 Event surveillance

Event surveillance systems monitor massive quantities of multivariate data in
order to detect and identify emerging patterns. For example, government agen-
cies responsible for public safety must respond rapidly to potential threats in-
cluding wars, disease outbreaks, crime waves, natural disasters, and terrorist
attacks. Timely and informed responses to such events may substantially re-
duce the resulting costs to society, while delayed or incorrect responses can
have catastrophic results. As a concrete example, we consider the task of dis-
ease surveillance, in which we monitor electronically available public health
data such as hospital visits and medication sales in order to detect emerging
outbreaks of disease. Major health threats such as emerging infectious dis-
eases or bioterrorist attacks require rapid and appropriate responses in order
to control the spread of disease and treat infected individuals. However, taking
appropriate actions often requires knowledge of the characteristics of the disease
(e.g. source, method of transmission, and available treatments) and which ar-
eas have been affected. Similarly, serious outbreaks requiring urgent responses
must be distinguished from less serious outbreaks (e.g. seasonal influenza) and
from irrelevant patterns in the data (e.g. increases in medication sales due to
store promotions).

The main goals of event surveillance are to achieve early detection and
accurate characterization of events, identifying which events have occurred and
which subsets of the data have been affected by each event. However, the
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Figure 1.1: Demonstration of the spatial scan statistic.

massive size, high dimensionality, and complex spatial and temporal structure
of the multivariate data make these goals difficult to achieve. As discussed
by Neill and Cooper (2008), an event surveillance system must meet three
general criteria to achieve timely and accurate detection:

1. To achieve high detection power, the system must integrate spatial and
temporal information from multiple data streams (or from multiple indi-
viduals in a population) in a coherent probabilistic framework, incorpo-
rating both prior knowledge and historical data into its models.

2. To achieve accurate characterization of events, the system must be able
to model and differentiate between multiple types of events.

3. To achieve a rapid response to emerging events, the system must be com-
putationally efficient, detecting patterns in large real-world datasets in
near real time.

We now discuss a variety of commonly used methods for event detection, and
consider how well the methods fit these criteria.
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1.1.2 The spatial scan statistic

The spatial scan statistic [Kulldorff and Nagarwalla (1995), Kulldorff (1997)] is
a well-known method for spatial cluster detection. It is in wide use for monitor-
ing health data, detecting clusters of disease cases due to chronic environmental
exposures [Kulldorff et al. (1997), Hjalmars et al. (1996)], infectious disease out-
breaks [Mostashari et al. (2003)], or bioterrorist attacks [Neill (2006)]. Given
a set of spatial locations si, each with a count (e.g. number of disease cases)
ci and an underlying population pi, the spatial scan finds the most significant
clusters by searching over a given set of spatial regions, finding those regions
which maximize a likelihood ratio statistic, and computing the statistical signif-
icance of the detected regions by randomization testing (Figure 1.1). Assuming
that the counts in region S are distributed with some unknown rate of incidence
q, the goal of the scan statistic is to find regions where the incidence rate is
higher than expected. We can either compare the counts inside and outside
region S [Kulldorff (1997)], or alternatively, compare the counts inside region S

to their expected values obtained from historical data [Neill et al. (2005b)]. In
either case, we define the null hypothesis H0, which assumes no clusters, and
the alternative hypothesis H1(S), which assumes a cluster in region S. We then
find the region that maximizes the likelihood ratio statistic:

F (S) =
Pr(Data | H1(S))

Pr(Data | H0)
(1.1)

The original presentation of the spatial scan statistic [Kulldorff (1997)] con-
siders two different models, the Bernoulli model and the Poisson model. In
the Bernoulli model, each individual is characterized by some binary variable
(e.g. whether the individual goes to the Emergency Department with a fever).
Under the null hypothesis of no clusters, H0, every individual has a constant
probability qall of having this property, while under the alternative hypothesis
of a cluster in region S, H1(S), the incidence rate is higher inside region S than
outside (i.e. qin > qout). In the Poisson model, we measure the total count of
some event type (for example, the number of over-the-counter cough/cold drugs
sold) in each spatial region. Assuming that counts are Poisson distributed with
mean proportional to the product of the population pi and the incidence rate
q, we can again compare the rates inside and outside region S. Likelihood ratio
statistics for each model are derived by Kulldorff (1997).

While Kulldorff’s original spatial scan statistic did not take the time di-
mension into account, later work generalized this method to the “space-time
scan statistic” by considering a time series of counts ct

i for each spatial location
si and scanning over variable size temporal windows [Kulldorff et al. (1998),
Kulldorff (2001)]. Recent extensions such as the expectation-based scan statis-
tic [Neill et al. (2005b)] and model-based scan statistic [Kleinman et al. (2005)]
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also take the time dimension into account by using historical data to model the
expected distribution of counts in each spatial location.

Many variants of the spatial and space-time scan statistics have been pro-
posed, differing in both the set of regions to be searched and the underly-
ing statistical models. While Kulldorff’s original method [Kulldorff (1997)]
assumed circular search regions, other methods have searched over rectan-
gles [Neill et al. (2005a)], ellipses [Kulldorff et al. (2006)], and various sets
of irregularly shaped regions [Duczmal and Assuncao (2004), Patil and Tail-
lie (2004), Tango and Takahashi (2005)]. Similarly, many different statistical
models have been considered, ranging from simple Poisson and Gaussian statis-
tics [Neill et al. (2005b), Neill (2006)] to robust and nonparametric models [Neill
and Sabhnani (2007), Neill and Lingwall (2007)].

Kulldorff et al. (2007) recently proposed a multivariate variant of the Poisson
spatial scan statistic. This work directly extends the original spatial scan to
multiple data streams by assuming that all data streams are independent, thus
calculating the likelihood ratio score for a given region as the product of the
likelihood ratios for each individual data stream. However, we expect streams
to be correlated by spatial and temporal trends and other covariates under
the null hypothesis, and by the parameters of an event (e.g. outbreak severity)
under the alternative hypothesis. Additionally, Kulldorff’s method does not
characterize events, differentiate between multiple event types, or incorporate
prior information. Nevertheless, it can integrate information from multiple data
streams for faster and more accurate detection, and performs well as a “general
detector” of anomalous patterns when no prior knowledge of events is assumed.
Neill and Cooper (2008) use this method as a baseline for comparison when
evaluating the detection power of their MBSS method.

1.1.3 The univariate Bayesian spatial scan statistic

The spatial scan approaches described in Section 1.1.2 fulfill some, but not
all, of the criteria for event surveillance discussed above. Spatial scan meth-
ods integrate information from multiple spatial locations and multiple time
steps, but with the exception of the multivariate Poisson spatial scan [Kulldorff
et al. (2007)], they can monitor only a single data stream. These methods are
also computationally expensive because randomization testing is used to de-
termine the statistical significance of detected clusters, requiring a search over
all spatial regions S for many randomly generated datasets. Most importantly,
none of these methods can model and differentiate between multiple event types,
limiting their usefulness for event characterization.

The Bayesian spatial scan statistic (BSS) method, developed by Neill et al.

(2006), enables the incorporation of prior information into the event detection
process. In the BSS framework, we are given a dataset D, consisting of a time
series of counts ct

i for each spatial location si, and we consider a given set of
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space-time regions S with prior probabilities Pr(H1(S)). For some recent past
period of time (e.g. the current day), BSS computes the posterior probability
that an event has occurred in each spatial region using Bayes’ Theorem:

Pr(H1(S) | D) =
Pr(D | H1(S))Pr(H1(S))

Pr(D)
(1.2)

Pr(H0 | D) =
Pr(D | H0)Pr(H0)

Pr(D)
(1.3)

The likelihood of the data under each hypothesis is computed using a Gamma-
Poisson model, and we can specify a probability distribution for the effects of
an event on the affected region S. Neill et al. (2006) demonstrated that the
Bayesian approach has several advantages over frequentist methods. Compu-
tation is much faster in the Bayesian framework since randomization testing
is unnecessary, and the results of the BSS method (the posterior probability
that each region has been affected) are easy to interpret and visualize. Most
importantly, the BSS framework allows us to model the spatial and tempo-
ral distribution of events by specifying the region priors Pr(H1(S)), as well as
modeling the effects of an event H1(S) on the monitored data stream in the
affected region S. While the original BSS method only considers a single data
stream and a single event type, the recently proposed multivariate Bayesian scan
statistic [Neill and Cooper (2008)] extends this framework to multiple streams
and multiple types of events. We discuss the MBSS method in more detail
in Section 1.2. More generally, the Bayesian framework can be extended to
multivariate data by specification of a Bayesian network relating the observed
variables and the underlying event. Each of the three methods discussed in this
chapter considers a different set of observations and thus assumes a different
Bayesian network structure. In the following section, we briefly review Bayesian
networks and their application to pattern detection.

1.1.4 Bayesian networks

A Bayesian network [Pearl (1988), Heckerman et al. (1995)], or Bayes Net, is a
commonly used graphical representation of the joint probability distribution of a
set of variables. Bayes Nets are a valuable statistical tool for efficient inference
and learning of multivariate probability distributions, and provide a concise
and interpretable visualization of the conditional dependencies between vari-
ables. They have been used in many anomaly detection applications, including
network intrusion detection [Bronstein et al. (2001), Ye and Xu (2000)], de-
tecting malicious emails [Dong-Her et al. (2004)] and outbreak detection [Wong
et al. (2003a), 2003b]. Formally, a Bayesian network can be represented as a di-
rected acyclic graph, where each vertex Xi represents a variable, and each edge
from a “parent” vertex Xp to a “child” vertex Xc represents the dependence
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of Xc on Xp. The joint probability distribution can be concisely expressed as
the product of each variable’s conditional distribution given the values of that
variable’s parents: Pr(X1 . . . XM ) =

∏
i=1...M Pr(Xi |Parents(Xi)). Conditional

independencies between variables can also be easily inferred from the network
structure: for example, any variable is conditionally independent of its non-
descendents given its parents. Inference and learning in Bayesian networks are
described in detail by Pearl (1988), Heckerman et al. (1995), and many others.

One general approach to anomaly detection using Bayesian networks is to
report any individual records with unusually low likelihoods as potential anoma-
lies. In this case, a Bayesian network is learned automatically from a large
“training dataset”. Established machine learning methods such as Optimal
Reinsertion [Moore and Wong (2003)] can be used to efficiently learn the net-
work structure, and the parameters can be optimized by maximum likelihood.
We then compute the likelihood of each record in a separate “test dataset”
given the Bayes Net model, and report the least likely records. Unlike the
scan statistic methods considered here, this method treats each individual data
record separately, and does not incorporate any spatial or temporal data or
other information about group structure. Das et al. (2008) use this method as
a baseline for comparison in their evaluation of AGD, as discussed below.

Also relevant to our discussion is the PANDA system for disease surveillance
proposed by Cooper et al. (2004, 2007), which uses Bayesian network models
to differentiate between multiple outbreak types (e.g. the CDC Category A dis-
eases), assuming an underlying agent-based model of Emergency Department
visits. Unlike the event detection methods considered here, the baseline version
of PANDA-CDCA [Cooper et al. (2007)] does not incorporate spatial informa-
tion, and thus cannot determine which subset of the data has been affected
by an event. However, Section 1.3 describes the agent-based Bayesian scan
statistic [Jiang and Cooper (2008)], which extends the PANDA-CDCA model
to spatial data.

In the remainder of this chapter, we discuss three recently proposed multi-
variate event detection methods: the multivariate Bayesian scan statistic [Neill
et al. (2007), Neill and Cooper (2008)], the agent-based Bayesian scan statis-
tic [Jiang and Cooper (2008)], and the Anomalous Group Detection method [Das
et al. (2008)]. All of these methods incorporate a Bayesian network struc-
ture to efficiently model the relationships between variables in the multivariate
dataset, using the observed variables to draw inferences about which type of
event has occurred and which subset of the data has been affected. The multi-
variate Bayesian scan statistic (MBSS) and agent-based Bayesian scan statistic
(ABSS) methods each assume a fixed Bayesian network structure relating the
underlying event to the observed variables and unobserved state variables, while
the Anomalous Group Detection (AGD) method learns the Bayesian network
structure from data. All three methods can be considered generalizations of the
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simple Bayesian network anomaly detection method discussed above, detecting
self-similar groups of anomalous records and characterizing the discovered pat-
terns. They also generalize the use of scan statistics to detect clusters of counts,
extending spatial scan methods from simple univariate models to multivariate
datasets, and thus providing a general and powerful framework for event de-
tection. AGD can also be applied to more general pattern detection problems
which may not have a spatial or temporal structure, such as knowledge discov-
ery from scientific databases.

1.2 The multivariate Bayesian scan statistic

The multivariate Bayesian scan statistic (MBSS) is a general framework for
event detection and characterization using multivariate stream-based data. The
MBSS method was first presented by Neill et al. (2007) and further developed
by Neill and Cooper (2008). This approach extends the original, univariate
Bayesian spatial scan statistic [Neill et al. (2006)] in two ways. First, rather
than detecting patterns in a single stream of data, it integrates information from
multiple data streams, improving the timeliness and accuracy of event detec-
tion. Second, MBSS extends the Bayesian framework to model and distinguish
between multiple different types of events, thus enabling both detection and
characterization of events.

In the stream-based event detection problem, we are given a dataset D

consisting of multiple data streams Dm. Each data stream contains spatial
time series data collected at a set of spatial locations si. For each stream Dm

and location si, we have a time series of counts ct
i,m, where t = 0 represents the

current time step and t = 1 . . . T represent the counts from 1 to T time steps ago
respectively. In disease surveillance, the data streams may include Emergency
Department (ED) visits, with each stream representing the number of visits
with a different chief complaint type, and over-the-counter (OTC) medication
sales, with each stream representing the number of sales of a different product
group. Thus a given count ct

i,m might represent the number of respiratory ED
visits, or the number of cough/cold drugs sold, for zip code si on day t.

The goals of the MBSS method are event detection and characterization:
to detect any relevant events occurring in the data, identify the type of event,
and determine the event duration and affected locations. Thus MBSS compares
the set of alternative hypotheses H1(S,Ek), each representing the occurrence
of some event of type Ek in some space-time region S, against the null hypoth-
esis H0 that no events have occurred. In disease surveillance, the event types
may be either specific illnesses (e.g. influenza, anthrax), non-specific syndromes
(e.g. influenza-like illness), or other non-outbreak events that may result in
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patterns of increased counts, such as promotional sales of OTC medications,
inclement weather, or tourism. More generally, an event can be thought of as
a process that affects some subset of the count data ct

i,m in some probabilistic
manner. In addition to the set of event types Ek, MBSS is also given the set
of space-time regions S to search, where each region S contains some subset
of the counts ct

i,m. Typically, each search region represents some set of spatial
locations si for some time duration w, and regions of varying size, shape, and
duration are considered.

1.2.1 Methods

Given the set of event types Ek, the set of space-time regions S, and the multi-
variate dataset D, MBSS computes the posterior probability Pr(H1(S,Ek) |D)
that each event type Ek has affected each space-time region S, as well as the
posterior probability Pr(H0 | D) that no event has occurred. The prior prob-
ability of each event type occurring in each space-time region, Pr(H1(S,Ek)),
and the prior probability of no events, Pr(H0), are given. MBSS computes the
likelihood of the multivariate data given each hypothesis, and then calculates
the posterior probability of each hypothesis using Bayes’ Theorem:

Pr(H1(S,Ek) | D) =
Pr(D | H1(S,Ek))Pr(H1(S,Ek))

Pr(D)
(1.4)

Pr(H0 | D) =
Pr(D | H0)Pr(H0)

Pr(D)
(1.5)

Here the total probability of the data, Pr(D), is equal to Pr(D | H0)Pr(H0) +∑
S,Ek

Pr(D | H1(S,Ek))Pr(H1(S,Ek)).

In the MBSS framework, counts are assumed to have been generated from
the Bayesian network represented in Figure 1.2. The event type Ek is drawn
from a multinomial distribution: here k = 0 represents the null hypothesis H0

of no events, with probability Pr(H0), and k = 1 . . . K represent the occurrence
of event type Ek, with corresponding probabilities Pr(Ek). The region of effect
S is conditional on the event type, with probabilities Pr(H1(S,Ek) | Ek). The
distribution of event types and regions can be learned from training data or
obtained from expert knowledge.

The effects of an event H1(S,Ek) on the data are determined by a value
xt

i,m for each location si, data stream Dm, and time step t. These effects are
assumed to be multiplicative, increasing the expected value of each count ct

i,m

by a factor of xt
i,m. For the null hypothesis H0, no events have occurred, and

xt
i,m = 1 everywhere. For an event H1(S,Ek), only locations and time steps

inside the space-time region S have been affected, and thus xt
i,m = 1 for all

i,m, t 6∈ S. Each event type can have a different joint probability distribution
over the effects xt

i,m.
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Figure 1.2: Bayesian network representation of the MBSS method. Solid ovals
represent observed quantities, and dashed ovals represent hidden quantities that
are modeled. The counts ct

i,m are directly observed, while the baselines bt
i,m and

the parameter priors for each stream (αm, βm) are estimated from historical
data.

The current implementation of MBSS [Neill and Cooper (2008)], as applied
to the disease surveillance domain, makes several additional assumptions. To
determine the search regions S, spatial locations are mapped to a uniform
grid, and all gridded rectangular regions are considered. This method yields
computational efficiency and the ability to detect both compact and elongated
clusters [Neill et al. (2005a)]. MBSS assumes a hierarchical Gamma-Poisson
model [Clayton and Kaldor (1987), Mollié (1999)]: each count ct

i,m is drawn from
a Poisson distribution with mean proportional to the product of the expected
count bt

i,m and the relative risk qt
i,m. The expected counts (assuming no events

taking place), are inferred from historical data, accounting for day-of-week and
seasonal trends. Under the null, all relative risks qt

i,m for a given data stream
Dm are drawn independently from a Gamma distribution with parameters (αm,
βm). These parameters are estimated for each data stream by matching the
mean and variance of the Gamma-Poisson model to their observed values in
historical data. Under the alternative hypothesis H1(S,Ek), the relative risks
qt
i,m inside region S are drawn from a Gamma distribution with parameters

(xt
i,mαm, βm). Neill and Cooper (2008) assume a simplified event model, in

which an event’s effect on each data stream Dm is some constant xm. These
constants are a function of the average effects xkm,avg of event type Ek on data
stream Dm, as well as the event severity θ: xm = 1 + θ(xkm,avg − 1). For
example, consider an event type Ek with average effects xkm,avg = 1.5, 1.2, and
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1.0 on three data streams D1 . . . D3. For an event of “average” severity (θ = 1),
the expected counts of streams D1 and D2 would be increased by 50% and
20% respectively, with no effect on stream D3. For a more severe event with
severity θ = 2, the expected counts of streams D1 and D2 would be increased by
100% and 40% respectively. Neill and Cooper (2008) assume a fixed, discrete
distribution for θ, and present a simple, smoothed maximum likelihood method
for learning the average effects xkm,avg from labeled training examples.

The marginal likelihood of each observed count ct
i,m can be computed given

the effect xt
i,m, baseline bt

i,m, and parameter priors αm and βm. MBSS integrates
over all possible values of the relative risk qt

i,m, weighted by their respective
probabilities. Neill and Cooper (2008) derive a closed form (negative binomial)
solution for the marginal likelihood. Since the null hypothesis assumes xt

i,m =
1 everywhere, and since the counts are conditionally independent given the
baselines, the α and β parameters, and the effects xt

i,m, the marginal likelihood
of the data under the null hypothesis can be easily computed. To calculate
the likelihood of the data given an alternative hypothesis H1(S,Ek), MBSS
marginalizes over the distribution of effects xt

i,m, computing a weighted average
of the data likelihoods given each effects vector (x1 . . . xM ), weighted by the
conditional probability of those effects given H1(S,Ek). The simplified event
model makes these marginals efficiently computable: for each possible event
type and severity, MBSS computes log-likelihood ratios for each location, and
then computes the log-likelihood ratios for all regions under consideration by
summing the location log-likelihoods. Alternatively, we can efficiently find those
regions with highest log-likelihood ratios, using a variant of the fast spatial
scan [Neill and Moore (2004)].

1.2.2 Evaluation

Neill and Cooper (2008) evaluated the event detection and characterization
performance of the MBSS method, with and without incorporating prior in-
formation, on simulated outbreaks of influenza-like illness (ILI) injected into
three streams of over-the-counter medication sales data (cough/cold, antifever,
and thermometers) from Allegheny County, Pennsylvania. A “general” MBSS
detector was used to handle the case when no prior knowledge of events is
available. This detector assumed 2M − 1 event models (one for each non-empty
subset of the M data streams). Each event model assumed equal average effects
on the affected subset of streams, and assumed a uniform prior over the event
types and affected regions. A “specific” MBSS detector was used to handle
the case when prior knowledge of one or more event types is available. This
detector assumed a pre-specified event model for each event type, giving the
average effects of this event type on each data stream. The main results of their
evaluation include:
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1. The “general” MBSS detector achieved 1.5 days faster detection than
univariate BSS detectors monitoring each data stream separately, demon-
strating that MBSS increases detection power by integrating information
from the multiple data streams.

2. The “general” MBSS detector and Kulldorff’s multivariate spatial scan
statistic [Kulldorff et al. (2007)] achieve very similar detection perfor-
mance, suggesting that either method can be used to detect a broad range
of event types when no prior information is available.

3. The “specific” MBSS detector was able to detect outbreaks an average
of 1.3 days faster than either the “general” MBSS detector or Kulldorff’s
multivariate scan. This demonstrates that MBSS can achieve higher de-
tection power by incorporating information about an event’s effects on
the different data streams. Further performance gains result from using
informative region priors that incorporate knowledge of the distribution
of each event type in space and time [Neill (2007)].

4. Given an event model for each of two different outbreak types (one pri-
marily causing respiratory symptoms, and one primarily causing fever),
MBSS was able to accurately differentiate between the outbreaks by the
second outbreak day. The posterior probability of the correct outbreak
type increased rapidly over the course of the outbreak, while the proba-
bility of the incorrect outbreak type remained constant and small.

1.2.3 Discussion

Neill and Cooper (2008) demonstrate that the MBSS method has several ad-
vantages as compared to prior event detection approaches. As in the univariate
Bayesian spatial scan method [Neill et al. (2006)], MBSS can incorporate prior
information of an event’s effects and its distribution in space and time, in-
creasing detection power. Similarly, the Bayesian scan statistics do not require
randomization testing, resulting in 2-3 orders of magnitude faster computation
as compared to the standard frequentist spatial scan.

Extension of the Bayesian framework to the multivariate case has further,
substantial benefits. Integration of information from multiple data streams en-
ables MBSS to detect emerging patterns (e.g. the early stages of an emerging
outbreak of disease) that would not be visible from monitoring only a sin-
gle stream. Incorporating multiple event models not only increases detection
power, but also allows MBSS to characterize events by specifying models for
multiple event types and computing the probability that each type of event has
occurred. This enables the user to distinguish relevant events requiring urgent
responses from irrelevant events which can safely be ignored, as well as inform-
ing the user’s response to these events. For example, patterns of influenza-like
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Figure 1.3: Example of a probability map computed by MBSS, from Neill and
Cooper (2008). Darker shading indicates a higher probability that the given
zip code has been affected.

illness would be a high priority for public health officials if these cases were
due to pandemic avian influenza or a bioterrorist anthrax attack, and different
interventions would be necessary in each case.

Finally, the outputs of MBSS (posterior probabilities of each event type in
each space-time region) are easy to interpret, visualize, and use for decision-
making. For example, considering the posterior probabilities of a given event
type Ek on a given day t, we can compute the probability that each spatial
location has been affected by summing the probabilities of all regions containing
that location, and display the resulting “probability map” (Figure 1.3).

Comparison to prior methods

The Bayesian network shown in Figure 1.2 is a special case of the general
stream-based scan statistic in Figure 1.4. In the general case, the counts ct

i,m

are conditionally independent given the baselines bt
i,m and relative risks qt

i,m.
The joint distribution of the qt

i,m is conditional on the event type Ek and region
S. However, the values of qt

i,m (for each location si, stream Dm, and time step
t) may be correlated by dependence on other hidden nodes. For example, in
Figure 1.2, observing a stream with a high count makes it more likely that the
event severity θ is large, and thus increases the probability that another stream
has a high count.

Both the univariate Bayesian spatial scan statistic [Neill et al. (2006)] and
Kulldorff’s Poisson spatial scan statistic [Kulldorff (1997)] can be considered
special cases of the Bayesian network in Figure 1.4, assuming a single data
stream Dm and a single event type (Ek = H1 or H0). In either case, we assume
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Figure 1.4: General Bayesian network representation of stream-based scan ap-
proaches. Relative risks qt

i,m are conditioned on the event type Ek and region
S, and may be correlated. Counts ct

i,m are conditionally independent given the
relative risks qt

i,m and baselines bt
i,m.

three additional nodes in the Bayesian network (qin, qout, qall). Under the null
hypothesis H0, qt

i,m = qall everywhere, and under the alternative hypothesis
H1(S), qt

i,m = qin inside region S and qt
i,m = qout outside region S. Kulldorff’s

Poisson scan statistic assumes the maximum likelihood values for qin, qout,
and qall. The Bayesian spatial scan statistic instead marginalizes over each
value, assuming that qin ∼ Gamma(xinαin, βin), qout ∼ Gamma(αout, βout),
and qall ∼ Gamma(αall, βall). The values of the α and β parameters are learned
from data, and a discrete uniform distribution of xin is assumed.

We note that the MBSS model differs from the original univariate Bayesian
spatial scan model [Neill et al. (2006)] even for the case of a single data stream
and single event type. Like Kulldorff’s spatial scan statistic [Kulldorff (1997)],
the original Bayesian spatial scan assumes constant relative risks qin, qout, and
qall. The MBSS model allows these risks to vary over space, time, and for
different data streams, assuming that each risk is drawn independently from
the Gamma distribution for that stream. Allowing risks to vary under the null
hypothesis reduces the number of false positives due to overdispersion of counts,
and the MBSS framework defines a simple and efficiently computable model for
the impact of each event type on each data stream.

Incorporating learning into pattern detection

One important aspect of MBSS is the ability to learn new event models (and
incrementally update existing models) from user feedback or from labeled train-
ing data. Neill and Cooper (2008) demonstrate that the average effects of each
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event type can be learned from a small number of labeled examples, and that the
fitted models gained a large improvement (average of 1.3 days faster detection)
as compared to the general multivariate detectors. We note that learning from
data may only be feasible for very common outbreaks (e.g. influenza), while
models of rare events would still rely heavily on expert knowledge. Another
possibility would be to learn models of common “confounding” events which
are not relevant for detection, and use these models to reduce the false positive
rates. For example, patterns of over-the-counter sales of cough/cold medica-
tions may occur due to cold weather, poor air quality, short-term population
fluctuations due to tourism, or even promotional sales of these medications.

Future work

The incorporation of incremental model learning into the multivariate Bayesian
pattern detection framework will be an important aspect of future work. In ad-
dition to the effects of each event type on the multiple data streams, many
other aspects of the event models can be learned from labeled data, including
the prevalence, size, shape, and spread of each type of event. The preliminary
results of Neill (2007) suggest that learning these aspects of the event model can
also lead to significant improvements in detection performance. Additionally,
“active learning” methods can be incorporated in order to choose potential
events that are both most relevant to the user and most informative to the
system, present these events to the user, and update models based on the user
feedback. Finally, the current MBSS implementation assumes the occurrence of
a single event, with constant effects over time. Future work will include extend-
ing MBSS to “dynamic models” (where events can move and grow over time,
and can have spatially and temporally varying effects), as well as “synergistic
models” (where multiple events with interacting effects can occur).

1.3 The agent-based Bayesian scan statistic

Most existing approaches to event detection are “stream-based” methods which
monitor the aggregate counts of a set of data streams and report patterns of
anomalously high counts. For example, a stream-based disease surveillance sys-
tem such as MBSS may look at the daily sales of anti-diarrheal medication and
numbers of gastrointestinal ED visits, with the goal of detecting an outbreak
of Cryptosporidium. An alternative event detection approach is to model each
individual (agent) in a population, observe one or more variables for each indi-
vidual, and draw inferences about the underlying event. These “agent-based”
approaches often rely on an explicit Bayesian network representation to model
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Figure 1.5: Bayesian network representation of the ABSS method. Solid ovals
represent observed quantities, and dashed ovals represent hidden quantities that
are modeled. Each agent’s value of Cr is directly observed.

the causal relationships between the underlying event, the state of each individ-
ual (which usually cannot be directly observed), and the observable variables.
The PANDA system developed by Cooper et al. (2004, 2007) is an agent-based
Bayesian network approach for disease surveillance using Emergency Depart-
ment data. Here we consider the agent-based Bayesian scan statistic (ABSS)
method proposed by Jiang and Cooper (2008), which extends PANDA by in-
corporating spatial information.

The ABSS approach assumes a population of R agents, r = 1 . . . R. Each
agent might represent an individual in the population, a measurement device
(e.g. a sensor that monitors for the presence of microbes), or some other entity.
Each agent r has a set of observable values Cr, which is conditioned on that
agent’s underlying state Dr. As in Jiang and Cooper (2008), we assume here
that agents are individuals in the population, and that each individual has a
single observable value Cr drawn from some multi-valued discrete distribution.
For example, in the disease surveillance domain, Dr may represent an indi-
vidual’s underlying disease state, which is not directly observed, and Cr may
represent that individual’s Emergency Department (ED) visit or purchase of
over-the-counter (OTC) medication. The underlying states, and therefore the
observable values, are conditioned on the event type Ek and the affected region
S, enabling us to draw inferences about the event and affected region given the
set of observed values {Cr}.

1.3.1 Methods

As in the MBSS approach, the agent-based Bayesian scan statistic assumes a
fixed set of event types Ek and a fixed set of spatial regions S. Given the multi-
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variate dataset D, the goal of this method is to compute the posterior probabil-
ity Pr(H1(S,Ek) | D) that each event type has occurred in each spatial region,
as well as the posterior probability Pr(H0 | D) that no events have occurred.
These probabilities can be computed by Bayes’ Theorem (Equation 1.4), com-
bining the prior probability of each hypothesis with the data likelihood given
that hypothesis.

However, the agent-based approach, rather than being given spatial time se-
ries data, is given a value Cr for each individual in the population, r = 1 . . . R.
These values are assumed to be drawn from some multi-valued discrete distri-
bution, and are conditionally independent of other individuals’ values given the
individual’s underlying state Dr (drawn from a different multi-valued discrete
distribution). As shown in the Bayesian network representation in Figure 1.5,
each individual’s state Dr is conditionally independent given the event type
Ek, the spatial region of effect S, and the fraction F of the population that has
been affected.

Jiang and Cooper (2008) apply their agent-based approach to the detection
of disease outbreaks using Emergency Department chief complaint data. The
chosen Bayesian network representation is an extension of the Bayesian net-
work used in PANDA-CDCA [Cooper et al. (2007)]. PANDA-CDCA does not
incorporate spatial information, but ABSS adds an extra node to the Bayesian
network representing the spatial region of effect S. In the ABSS framework,
the event type Ek is assumed to take on one of 14 values: the 13 different out-
break diseases considered in PANDA-CDCA (influenza, anthrax, etc.) or H0

(no outbreak occurring). Each individual’s underlying state Dr represents two
quantities: whether or not the individual goes to the Emergency Department,
and in the event of an Emergency Department visit, what disease is respon-
sible for the visit. Thus Dr can take on 15 different values: the 13 different
outbreak types, “other” (i.e. the individual goes to the ED for another reason,
such as an accident or broken bone), or “no ED” (i.e. the individual does not
visit the Emergency Department). The observed values Cr represent the chief
complaints for each ED patient (or “no ED” for individuals who did not visit
the ED). As in PANDA-CDCA, chief complaints were classified into 54 different
categories, and thus each Cr can take on 55 different values including “no ED”.

In Jiang and Cooper (2008), the conditional probability table for each node
of the Bayesian network in Figure 1.5 is pre-specified based on expert knowl-
edge of the domain. The prior distribution Pr(Ek) assumes Pr(H0) = 0.95,
Pr(influenza) = 0.04, and small priors on the 12 other outbreak types (for ex-
ample, Pr(botulism) = 0.0005). As in MBSS, the events are assumed to be
mutually exclusive, and thus Pr(H0) +

∑
k Pr(Ek) = 1. Each event type Ek is

assumed to have a uniform region prior, Pr(H1(S,Ek) | Ek) = 1
Nregions

, where

Nregions is the total number of spatial regions considered. More generally, each
event type could have a different spatial prior distribution over regions, and
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these distributions could be either pre-specified by expert knowledge or learned
from labeled training data (e.g. known outbreaks). The variable F is assumed
to represent the fraction of the population that is affected by the outbreak and
goes to the ED. In the current implementation of ABSS, Jiang and Cooper
(2008) assume a fixed, discrete distribution for F . However, different outbreak
types might tend to affect different fractions of the population, or be more or
less likely to send affected individuals to the ED. The dependence of F on the
event type Ek in Figure 1.5 allows this information to be incorporated as well.

The distribution of Dr depends on whether any outbreak is occurring, and
if so, whether individual r is in the affected spatial region S. In the event of no
outbreak, or for individuals outside S, Dr is assigned the values “other” or “no
ED”, where the probability of an individual visiting the ED is estimated using
historical data. For individuals inside region S when an outbreak is occurring,
Dr is assigned either the outbreak disease (with probability F ), “other”, or
“no ED”. Finally, each outbreak disease Dr (including “other”) has its own
probability distribution over chief complaints Cr, and these distributions were
specified by a domain expert.

We now consider how to compute the likelihood of the data for a given event
type Ek, affected region S, and fraction F . For the null hypothesis H0, the same
inference can be performed, assuming that S = ∅. Given the observed value Cr

for each individual r = 1 . . . R, Jiang and Cooper (2008) perform inference on
the Bayesian network, marginalizing over the values of the hidden nodes Dr:

Pr(D | H1(S,Ek, F )) =
∏

r

∑

Dr

Pr(Cr | Dr)Pr(Dr | H1(S,Ek, F ))

=
∏

r∈S

∑

Dr

Pr(Cr | Dr)Pr(Dr | H1(Ek, F )) ×
∏

r 6∈S

∑

Dr

Pr(Cr | Dr)Pr(Dr | H0)

The total likelihood of the data given each hypothesis can be calculated by
marginalizing over the distribution of F , and the posterior probabilities can be
computed from the likelihoods and priors using Bayes’ Theorem as above.

1.3.2 Evaluation

Jiang and Cooper (2008) evaluated ABSS on simulated outbreaks of influenza
and cryptosporidium, injected into real-world Emergency Department data
from Allegheny County, Pennsylvania. Detection power (average days to de-
tection, as a function of the allowable false positive rate) and spatial detection
accuracy (average overlap between true and detected clusters) were compared
to two previously proposed methods, PANDA-CDCA [Cooper et al. (2007)] and
Kulldorff’s original (univariate) spatial scan statistic [Kulldorff (1997)]. Their
comparisons demonstrate that ABSS outperformed both PANDA-CDCA and
spatial scan by a substantial margin for both datasets and according to both
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performance measures. The improvement over PANDA-CDCA, which does not
use spatial information, demonstrates that incorporation of spatial informa-
tion into the agent-based Bayesian network framework substantially improves
detection power. The improvement over spatial scan, which only uses the aggre-
gate case count in each spatial area rather than the counts for each individual
symptom, demonstrates that incorporation of multivariate information (and
modeling of the underlying causal structure) also enables improved detection.

1.3.3 Discussion

The agent-based Bayesian scan statistic model can be considered a variant of
standard scan statistic approaches where data is provided for each individual in
the population rather than for a set of data streams. This model is particularly
appropriate when we have individual-level data, but can be used for aggregate
count data as well. Using individual-level data, if this data is available, has
several advantages. Though the current ABSS model assumes that each indi-
vidual r has the same probability distribution for their underlying state Dr and
observed variable Cr, the model can be easily extended to the case where these
distributions are conditioned on individual-level covariates such as age, gender,
and occupation. Additionally, the agent-based model can be extended to the
case where each individual has a joint distribution over multiple observable vari-
ables. Observing a single individual with multiple indicators of an event (for
example, an ED patient who has both a fever and a rash) may enable faster and
more accurate detection than separately considering the number of individuals
with each indicator.

On the other hand, if only the aggregate counts are provided, then either the
agent-based (multinomial) or the stream-based (multivariate Poisson) method
may be more appropriate. For example, we may observe only the number of
ED patients with each chief complaint type, or the total sales of each category
of over-the-counter medication. If the number of individuals in the population
is known, and each individual can take only one action (such as visiting the ED
with a specific chief complaint type) out of a predefined set of actions, then the
ABSS model may be preferable. If individuals can take multiple actions, and
the population size is not known, we might prefer to infer the expected counts
from historical data and compare actual to expected counts, as in MBSS.

Comparison to prior methods

The Bayesian network shown in Figure 1.5 is a special case of the general
agent-based scan statistic in Figure 1.6. In the general case, each individual r

has an observed value Cr. The joint distribution of the Cr is conditional on
the event type Ek and region S. However, different individuals’ values of Cr

may be correlated by the addition of hidden nodes to the Bayesian network. For
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Figure 1.6: General Bayesian network representation of agent-based scan ap-
proaches. Solid ovals represent observed quantities, and dashed ovals represent
hidden quantities that are modeled. Each agent’s value of Cr is conditioned
on the event type Ek and region S, and these values may be correlated by
additional hidden nodes.

example, in Figure 1.5, observing an individual with disease symptoms increases
the likelihood that F (the fraction of the population affected) is large, and thus
increases the probability that another individual has disease symptoms.

The Bernoulli spatial scan statistic [Kulldorff (1997)] can also be considered
a special case of the Bayesian network in Figure 1.6, with one event type (Ek =
H1 or H0) and binary variables Cr. In this case, we assume three additional
nodes in the Bayesian network (qin, qout, qall). Under the null hypothesis H0,
Pr(Cr = 1) = qall everywhere, and under the alternative hypothesis H1(S),
Pr(Cr = 1) = qin inside region S and Pr(Cr = 1) = qout outside region S.
However, rather than marginalizing over qin, qout, and qall, the Bernoulli spatial
scan assumes the maximum likelihood values for each node.

Future work

Future work by Jiang et al. will compare the agent-based approach to other
multivariate spatial detection methods, including MBSS and Kulldorff’s mul-
tivariate spatial scan statistic. Additionally, the current implementations of
ABSS and PANDA-CDCA used a “specific” detector with pre-specified models
of 13 outbreak diseases (including influenza, cryptosporidium, and the CDC
Category A diseases), and the simulated outbreaks were generated assuming a
distribution of chief complaints that is identical to these models. Future work
will evaluate ABSS on disease outbreaks generated according to different chief
complaint distributions (i.e. measuring performance as a function of the dif-
ference between true and assumed distributions), and thus test the robustness
of this method to model misspecification. While the current implementation
of ABSS is specific to Emergency Department disease surveillance, ABSS can
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be extended to other application domains using more general definitions of the
individual’s underlying state Dr, observed behavior Cr, and the fraction of the
population affected F . Finally, future versions of ABSS will include many of
the current features of MBSS, such as incorporation of temporal information,
visualization of outputs, and learning of event models from labeled data.

1.4 The Anomalous Group Detection method

We now consider how the scan statistic framework can be extended from the
specific case of event surveillance to more general multivariate datasets. This
extension poses several challenges. Since many datasets have no explicit space
or time component, we cannot simply search over geographical regions, and
thus it is not clear which subsets of the data should be considered. Addition-
ally, while other scan statistic methods assume a fixed parametric model for
the effects of different types of pattern on the data, we may wish to detect
anomalous patterns in more general datasets where no such model is known.
One solution to these challenges is provided by the Anomalous Group Detection
(AGD) method, recently proposed by Das et al. (2008). Rather than relying
on a fixed parametric model, AGD learns the structure and parameters of a
Bayesian network from the data, and searches over self-similar subsets of the
data to find anomalous patterns.

The AGD method can be used to detect anomalous groups in arbitrary,
non-spatial datasets with discrete valued attributes. For typical stream-based
scan statistic approaches, each data point consists of a set of real-valued “loca-
tion” attributes as well as real-valued “count” data. The set of search regions
is defined by the location attributes (e.g. spatial scan searches over geographi-
cally contiguous subsets of the data) while the likelihood under each hypothesis
H1(S) is a function of the counts inside and outside region S. In the more
general pattern detection problem, there may be no defined set of location at-
tributes, and thus we can no longer predefine a set of search regions based
on geographical attributes such as size, shape, or contiguity. Nevertheless, we
want to formulate a measure of how well a subset of data points fit as a group

based on the similarity between them. We must then perform a search over all
possible subsets of the data in order to find the most anomalous groups.

Another difference between the AGD method and other scan statistic ap-
proaches is in the definition of anomalousness for a data point or a group of
points. Scan statistics are usually applied to detect overdensities of records in
a given space: individual records are aggregated into counts, and clusters with
anomalously high counts are detected. In the AGD framework, however, each
record has many discrete-valued attributes, and can have an inherent degree of
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anomalousness depending on its features. Most records are generated from the
“normal” distribution of data and hence are not relevant. Instead, the goal of
AGD is to detect groups of records that are both anomalous and also self-similar
in some respect.

1.4.1 Methods

The AGD framework assumes a multivariate dataset D, where each data record
Ri ∈ D has values for a set of discrete-valued attributes X1 . . . XM . As in the
original spatial scan statistic approach [Kulldorff (1997)], AGD finds the set of

records that maximizes the likelihood ratio statistic F (S) = Pr(D | H1(S))

Pr(D | H0)
, where

H0 is the null hypothesis that there are no anomalies present, and H1(S) is the
alternative hypothesis specifying that the set S is an anomalous group. AGD
assumes Bayesian network models for both the null and alternative hypothesis,
and computes the data likelihoods given these models. For the null hypothesis
H0, a Bayesian network model is inferred from a separate training dataset
(e.g. historical data), which is assumed to contain no anomalies, and all data
records are assumed to have been drawn independently from this model. Under
the alternative hypothesis H1(S), the records contained in subset S are assumed
to have been drawn from a different Bayes Net model, while the rest of the
data records are generated from the null model. The Bayesian network model
parameters for the alternative hypothesis H1(S) are learned directly from the
records in subset S, as discussed below.

This scoring metric gives a higher score to anomalous records, as well as
setting a constraint of similarity between the records in a group. If the records
in S are similar to each other, then H1(S) will be able to model them tightly.
This will result in a high value of the data likelihood under the alternative
hypothesis H1(S), thus increasing the score F (S). Also, records that are poorly
modeled by the training data will have low likelihoods under the null hypothesis
H0, again increasing the group score F (S). Hence maximizing this score leads
to grouping of similar records and at the same time it prefers records that are
anomalous (i.e. that have low likelihoods under the null hypothesis).

As discussed by Das et al. (2008), the AGD algorithm consists of three steps:

1. Learn the Bayesian Network model for the null hypothesis H0 from the
training data.

2. For all subsets of the data S:

(a) Fit the alternate hypothesis Bayesian Network (H1(S)) parameters
using data from subset S.

(b) Compute the group likelihood ratio score F (S).

3. Output the groups with highest score.
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Step 1 is to learn the Bayesian network corresponding to the null hypoth-
esis. The network structure is learned automatically from the training dataset
using the Optimal Reinsertion algorithm [Moore and Wong (2003)], and this
structure is assumed for the null hypothesis H0 and for all alternative hypothe-
ses H1(S). The probability table parameters of H0 are then learned from the
training dataset using smoothed maximum likelihood estimation. For a given
node corresponding to the variable Xi in the Bayes Net, let XΠi

denote the set
of variables corresponding to the parent nodes of Xi. The conditional proba-
bility table of Xi has parameters corresponding to the conditional probability
values θijk = Pr(Xi = j |XΠi

= k). Here we must estimate θijk for each variable
Xi, value j, and set of parent values k. The maximum likelihood parameter
estimates are given by θ̂ijk =

Nijk∑
j′

Nij′k

, where Nijk denotes the number of in-

stances in the training dataset with Xi = j and XΠi
= k. To deal with sparsity

of the training data, Das et al. (2008) apply Laplace smoothing to adjust the
estimate of each model parameter.

Steps 2-3 find groups of records S that maximize the likelihood ratio score

F (S) = Pr(D | H1(S))

Pr(D | H0)
, where the alternative hypothesis H1(S) assumes that

the records in subset S form an anomalous group, and the null hypothesis H0

assumes that no anomalous groups are present. The optimal group can be found
by searching over all subsets of the test data, but this exhaustive search would
require exponential time. Thus Das et al. (2008) propose a greedy heuristic
search method which starts from each record as an initial seed and iteratively
adds the record that most improves the likelihood ratio score. This search
method can find high-scoring groups in a computationally efficient manner, but
does not guarantee that the optimal group will be found.

Step 2a fits the parameters of the Bayesian network for the alternative
hypothesis H1(S). Das et al. (2008) use an empirical Bayes approach in which
these parameters are estimated from the counts in the subset of the test dataset
represented by S, following an approach of smoothed maximum likelihood es-
timation similar to Step 1 above. In this case, Nijk denotes the corresponding
counts in region S. Since the number of records in group S may be small and
this data is used to fit a large number of Bayesian network parameters, data
sparsity is a serious problem, and computing the likelihood Pr(D |H1(S)) using
this model risks overfitting of the data.

Step 2b computes the group likelihood ratio score F (S), performing infer-
ence on the Bayesian Networks corresponding to H1(S) and H0 to compute the
data likelihoods under each hypothesis. Since data points are assumed to be
conditionally independent given the model, and records not contained in subset
S have identical likelihoods given H1(S) and H0, the likelihood ratio statistic
simplifies to:

F (S) =

∏
Ri∈S Pr(Ri | H1(S))
∏

Ri∈S Pr(Ri | H0)
(1.6)
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Das et al. (2008) deal with the overfitting problem mentioned above by using
a “leave-one-out” method based on the pseudo-likelihood of each record Ri in
S. In this case, the numerator of Equation 1.6 becomes

∏
Ri∈S Pr(Ri | H1(S −

{Ri})). To compute the likelihood of each record Ri, assuming the alternative
hypothesis H1(S), a Bayesian network model is learned from all the records in
S except for Ri, and this model is used to compute the likelihood of Ri. Since
the likelihood of each record is computed without using that record to estimate
the model parameters, this reduces the risk of over-fitting.

Step 3 outputs the highest scoring groups found in step 2. Additionally, Das
et al. (2008) compute an anomalousness score for each individual record R in
the test data, by finding the highest scoring group S∗(R) that contains R. The
score of record R can then be computed in one of two ways. In the “group
likelihood ratio” approach, Score(R) is set equal to the group score F (S∗(R)).
This approach gives a high score to any record that is contained in a highly
anomalous group, regardless of whether the record is itself anomalous or just
similar to other anomalous records. Alternatively, we can consider only the
contribution of record R to the score of S∗(R). In this “single record likelihood
ratio” approach, Score(R) is set equal to the partial record pseudo-likelihood

ratio, Pr(R | H1(S∗(R)−{R}))

Pr(R | H0)
.

1.4.2 Evaluation

Das et al. (2008) compare the performance of their method to the baseline
method described above, which detects individual records with low likelihoods
given the null Bayes Net model. Synthetic anomalies were injected into two
real-world datasets: a dataset of Emergency Department (ED) records from
Allegheny County, Pennsylvania, and the PIERS dataset of container ship-
ping data. The former dataset contains records of patients visiting Allegheny
County Emergency Departments. Each record consists of six categorical at-
tributes (hospital id, prodrome, age decile, home zip code and chief complaint
class), and the goal is to detect anomalous groups of records (e.g. spatial dis-
ease clusters, age/gender clusters, and increases in different symptom types)
that correspond to emerging disease outbreaks. The second dataset consists of
records describing containers imported into the country. Each record consists
of 10 attributes: country of origin, departing and arriving ports, shipping line,
shipper name, vessel name, commodity being shipped, and the size, weight, and
value of the container. In this case, the goal is to detect anomalous groups of
records corresponding to patterns of smuggling, terrorist activity, or other illicit
shipments.

Das et al. (2008) evaluated the performance of the algorithms in two dif-
ferent ways. The first evaluation criterion was the ability of each algorithm
to identify each individual anomaly correctly. Figure 1.7 plots the detection
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Figure 1.7: Plot of detection precision vs. recall for a) Emergency Department
dataset and b) PIERS dataset, from Das et al. (2008).

precision, i.e. the ratio of number of true positives to the total number of pre-
dicted positives, against the detection rate, i.e. the proportion of total true
anomalies that were detected. For both the “group likelihood ratio” and “sin-
gle record likelihood ratio” methods, AGD performed significantly better than
the baseline method without grouping. Similar results were obtained when
examining the ability of the algorithms to identify and distinguish between
entire datasets which have anomalous groups against ones which do not have
any anomalies, e.g. distinguishing datasets containing outbreaks from datasets
with no outbreaks. For these experiments, the grouping method again achieved
significantly higher performance than the baseline anomaly detection method.
While the set of anomalies were synthetically generated, current work by Das et
al. includes evaluation on real anomalies, e.g. retrospective analysis of known
disease outbreaks.

1.4.3 Discussion

The primary advantage of the AGD method is its generality: unlike the MBSS
and ABSS methods, AGD can be directly applied to arbitrary multivariate
datasets without the need for a pre-specified Bayesian network model of how
the data is generated. Instead, the structure of the network and the parameters
for each node are learned from a training dataset, and the learned model is used
for detection. Although Das et al. (2008) exclusively deal with categorical val-
ued datasets, AGD can be generalized to handle datasets containing real valued
attributes as well, using Bayesian network models that incorporate both cate-
gorical and real valued nodes. However, AGD does have several disadvantages.
It cannot model and distinguish between multiple event types, since the param-
eters for the alternative hypothesis H1(S) are fitted directly from that subset
of the test data. Learning a model using the test data and then computing the
likelihood of the test data given that model can result in overfitting, and the
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proposed solution (use of the pseudo-likelihood) gives outputs that cannot be
interpreted as posterior probabilities.

Comparison to prior methods

The AGD algorithm can be thought of as a generalization of scan statistic
methods such as MBSS and ABSS to arbitrary multivariate datasets without
predefined location or count attributes. All attributes of the data are used
to determine both the self-similarity of the group and the anomalousness of its
component records, as opposed to previous methods that determine the anoma-
lousness of the count attributes and use the location attributes for grouping.
While standard scan statistics implicitly or explicitly assume a fixed Bayesian
network model relating the observed variables (i.e. aggregate counts in stream-
based approaches, and individual-level variables in agent-based approaches) to
the underlying event and affected region, AGD learns the underlying model
from the training dataset. Additionally, standard scan statistics are geared to-
ward the event detection problem, searching over a set of contiguous spatial
regions that are predefined based on the location attributes of the data, while
AGD performs a heuristic search over arbitrary subsets of the data.

Future work

Future work by Das et al. will extend the AGD approach to incorporate mul-
tiple pattern types Ek, model the effects of each pattern type on the data, and
distinguish between multiple pattern types (by computing the posterior proba-
bility that each pattern type Ek affects each subset of the data S). Each pattern
type can have a different prior probability Pr(Ek) and a different distribution
over subsets of the data. Models of how each pattern type will affect a given
subset of the data can be defined, allowing computation of the data likelihood
given each hypothesis H1(S,Ek). Different pattern types can have a different
distribution over Bayesian network structures and parameters, and the data can
be represented as a “mixture of Bayes Nets.” Each alternative Bayes Net model
can be related to the null Bayes Net by changing the conditional distributions
of the output attributes based on the event model Ek. Finally, future work will
develop methods which can learn these models for each pattern type. These
extensions could be valuable for finding groups in new datasets that match
specific patterns of anomalous activity learned from earlier data.
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ping. In Lawson, A. B., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J.-F., and
Bertollini, R. (Eds.), Disease Mapping and Risk Assessment for Public Health.

Moore, A. and Wong, W.-K. (2003). Optimal reinsertion: A new search opera-
tor for accelerated and more accurate bayesian network structure learning. In
Proceedings of the 20th Intl. Conf. on Machine Learning, pp. 552–559.

Mostashari, F., Kulldorff, M., Hartman, J. J., Miller, J. R., and Kulasekera, V.
(2003). Dead bird clustering: A potential early warning system for West Nile
virus activity. Emerging Infectious Diseases, 9, 641–646.

Neill, D. B. (2006). Detection of spatial and spatio-temporal clusters. Tech. rep.
CMU-CS-06-142, Ph.D. thesis, Carnegie Mellon University, School of Computer
Science.

Neill, D. B. (2007). Incorporating learning into disease surveillance systems.
Advances in Disease Surveillance, 4, 107.

Neill, D. B. and Cooper, G. F. (2008). A multivariate Bayesian scan statistic for
early event detection and characterization. Tech. rep. submitted for publication,
Carnegie Mellon University, School of Computer Science.



Bayesian Network Scan Statistics 29

Neill, D. B. and Lingwall, J. (2007). A nonparametric scan statistic for multi-
variate disease surveillance. Advances in Disease Surveillance, 4, 106.

Neill, D. B., Moore, A. W., and Cooper, G. F. (2007). A multivariate Bayesian
scan statistic. Advances in Disease Surveillance, 2, 60.

Neill, D. B., Moore, A. W., and Sabhnani, M. R. (2005a). Detecting elongated
disease clusters. Morbidity and Mortality Weekly Report, 54 (Supplement on
Syndromic Surveillance), 197.

Neill, D. B., Moore, A. W., Sabhnani, M. R., and Daniel, K. (2005b). Detection
of emerging space-time clusters. In Proc. 11th ACM SIGKDD Intl. Conf. on

Knowledge Discovery and Data Mining.

Neill, D. B. and Sabhnani, M. R. (2007). A robust expectation-based spatial
scan statistic. Advances in Disease Surveillance, 2, 61.

Neill, D. B. and Moore, A. W. (2004). Rapid detection of significant spatial
clusters. In Proc. 10th ACM SIGKDD Conf. on Knowledge Discovery and Data

Mining, pp. 256–265.

Neill, D. B., Moore, A. W., and Cooper, G. F. (2006). A Bayesian spatial
scan statistic. In Advances in Neural Information Processing Systems 18, pp.
1003–1010.

Patil, G. P. and Taillie, C. (2004). Upper level set scan statistic for detecting
arbitrarily shaped hotspots. Envir. Ecol. Stat., 11, 183–197.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann.

Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for
detecting clusters. International Journal of Health Geographics, 4, 11.

Wong, W.-K., Moore, A. W., Cooper, G. F., and Wagner, M. M. (2003a).
Bayesian network anomaly pattern detection for disease outbreaks. In Proc.

20th International Conference on Machine Learning.

Wong, W.-K., Moore, A. W., Cooper, G. F., and Wagner, M. M. (2003b).
WSARE: What’s strange about recent events?. Journal of Urban Health, 80(2
Suppl. 1), i66–i75.

Ye, N. and Xu, M. (2000). Probabilistic networks with undirected links for
anomaly detection. In IEEE Systems, Man, and Cybernetics Information As-

surance and Security Workshop, pp. 175–179.


