Dynamic Component Substitutability Analysis*

Natasha Sharygina Sagar Chaki Edmund Clarke Nishant Sinha
nys| chaki @ei .cnu. edu ent|natalie|nishants@s. crmu. edu

Carnegie Mellon University

Abstract. This paper presents aamutomatedand compositionalprocedure to
solve the substitutability problem in the context of evolyisoftware systems.
Our solution contributes two techniques for checking azirress of software up-
grades: 1) a technique based on simultaneous use of ovemaed approxima-
tions obtained via existential and universal abstracti@sa dynamicassume-
guarantee reasoning algorithm — previously generated cpemi assumptions
are reused and altered on-the-fly to prove or disprove tHeajkafety properties
on the updated system. When upgrades are found to be notitsizitde our so-
lution generates constructive feedback to developersisigdvow to improve the
components. The substitutability approach has been ingiged and validated
in the CoMFORT model checking tool set and we report encouraging results
an industrial benchmark.

Keywords: Software Model Checking, Verification of Evolving Softwatearn-
ing Regular Sets, Assume/Guarantee Reasoning

1 Introduction

Software systems evolve throughout the product life-cylete example, any software
module (or component) is inevitably transformed as desigkes shape, requirements
change, and bugs are discovered and fixed. In general sudlitiesoresults in the
removal of previous behaviors from the component and amdibf new ones. Since
the behavior of the updated software component has no dioetlation to that of its
older counterpart, substituting it directly can lead to tinds of problems. First, the
removal of behavior can lead to unavailability of previgustovided services. Second,
the addition of new behavior can lead to violation of globairectness properties that
were previously being respected.

In this context, thesubstitutabilityproblem has been defined [7] as the verification
of the following two criteria: (i) anypdated portiorof a software system must continue
to provide allservicesoffered by its earlier counterpart, and (ii) previouslyadsished
systemcorrectness propertiemust remain valid for the new version of the software
system.

* This research was conducted as part of the CMU/SEI IRAD ptaje Verification of Evolving
Software and partially sponsored by the Office of Naval ResefONR). The views and
conclusions contained in this document are those of theoesitind should not be interpreted
as representing the official policies, either expressemhplied, of ONR, the U.S. Government
or any other entity.

Model checking can be used at each stage of a system’s exototsolve both the
above problems. However, conventionally model checkirgpiglied to the entire sys-
tem after every update irrespective of the degree of motiificénvolved. The amount
of time and effort required to verify an entire system can behjbitive and repeat-
ing the exercise after each (even minor) system updateiisftre impractical. In this
article we present aautomatedramework thatocalizesthe necessary verification to
only modified system components, and thereby reduces dicaihathe effort to check
substitutability after every system update. Note that camework is general enough
to handle changes in the environment since the environnagnalso be modeled as a
component.

In our framework a componentis essentially a C program comcating with other
components via blocking message passing. An assembly ifeataan of such concur-
rently executing and mutually interacting components. Viledefine the notion of a
component’s behavior precisely later but for now let us detite set of behaviors of a
componentC' by Behv(C). Given two component§' and ¢’ we will write C C ¢’
to meanBehv(C) C Behv(C").

Suppose we are given an assembly of componénts{ (1, ..., C,}, and a safety
propertyy. Now suppose thahultiplecomponents i€ are upgraded. In other words,
consider anindexs& C {1,...,n} such that for eache 7 there is anewcomponent
C{ to be used in place of itsld versionC;. Our goal is to check the substitutability of
C{ for C; in C for everyi € 7 with respect to the property. This paper presents a
framework that satisfies this goal by establishing the faitg two tasks:

Containment. Verify, for eachi € Z, that every behavior of’; is also a behav-
ior of Oi/, ie.,, C; C Oi/. If C; Z Ci/, we also construct a sef; of behaviors in
Behv(C;) \ Behw(C;) which will be subsequently used for feedback generatioieNo
that the upgrade may involve the removal of behaviors desgghas errant, sai. In

this case, we check; \ B C C, since behaviors oB will clearly be absent irC; .

Compatibility. Let us denote by’ the assembly obtained froéhby replacing the
old componenC; with its new versionC{ for eachi € Z. Since in general it is not
the case that for eache Z, C{ C G;. Therefore, the new assemlily may have more
behaviors than the old assemlily HenceC’ might violate even thougtC did not.
Thus, our second task is to verify th@lt satisfies the safety propergy(which would
imply that the new components can be safely integrated).

Note that checking compatibility is non-trivial becausesijuires the verification of
a concurrent system where multiple components might hage bedified. Moreover,
this task is complicated by the fact that our goal is to foauth@ components that have
been modified.

The component substitutability framework is defined by thkofving new algo-
rithms: 1) a technique based on simultaneous use of over ader @pproximations
obtained via existential and universal abstractions fer cbntainment check of the
substitutable components; 2Hgnamicassume-guarantee algorithm developed for the
compatibility check. The algorithm is based on automassstétic learning for regular
sets. It is dynamic in the sense that it learns appropriate@ment assumptions for
the new components lrgusingthe environment assumptions for their older versions.

The framework uses an iterative abstraction/refinemerstdigm for both the con-
tainment and compatibility check procedures. The abstradiased approach is es-
sential since it not only enables the extraction of finiegestmodels from software
programs but also reduces the complexity of software vatifia. Details of the ab-
straction procedure and the abstraction/refinement psaresbeyond the scope of this
article and can be found in [4]. In summary, the developedpmmant substitutability
framework has several advantageous features:

It allows multiplecomponents to be upgraded simultaneously. This is cruicieés
modifications in different components often interact nowidlly to maintain over-

all system safety and integrity. Hence such modificationstrha analyzed jointly.

It identifies features of an old component which are abseits inpdated version.

It subsequently generates feedback to localize the motiifitcarequired to add the
missing features back.

It is completely automated and usygmamicassume-guarantee style reasoning to
scale to large software systems.

It allows new components to have more behaviors than thdicolinterparts in
order be replaceable. Thextra behaviors are critical since they provide vendors
with flexibility to implement new features into the produgigrades. Our frame-
work verifies if these new behaviors do not violate previgwesdtablished global
specifications of a component assembly

We employ state/event-based modeling techniques [5] toefrentd reason about
both the data and communication aspects of software. Inicpkt we use the
state/event computational structures, called Doubly leah&utomata (DLA) to model,
as well as to specify, software systems. We have impleméinéeslibstitutability frame-
work as part of the GMFORT [6] reasoning framework, which is based on the C model
checkemaaic [4,15]. We experimented with an industrial benchmark anpbreen-
couraging results in Section 7.

2 Related Work

Related projects often impose the restriction that evehabier of the new component
must also be a behavior of the old component. In such a casetheomponent is said
to refine the old component. For instance, de Alfaro et al, 1 dlefine a notion of in-
terface automaton for modeling component interfaces aod slompatibility between
components via refinement and consistency between inesfatowever, automated
techniques for constructing interface automata from campbimplementations are
not presented. In contrast, our approach automaticalhpete conservative DLA mod-
els (which are similar to finite state interface automatajrfftomponent implementa-
tions. Moreover, we do not require refinement among the aldigments and their new
versions.

! Verification of these new features remains a responsitifitslesigners of the upgraded sys-
tems.

Ernst et al. [16] suggest a technique for checking compyiloif multi-component
upgrades. They derive consistency criteria by focusinghpat/output component be-
havior only and abstract away the temporal information.rEtieugh they state that
their abstractions are unsound in general, they reporessda detecting important er-
rors. In contrast, our abstractions preserve temporatnimdtion about component be-
havior and are always sound. They also use a refinement-bhased on the generated
consistency criteria for showing compatibility.

The application of learning is extremely useful from a pragjmpoint of view since
it is amenable to complete automation, and is gaining rapjaufarity [14] in formal
verification. The use of learning for automated assumeajuae reasoning was pro-
posed originally by Cobleigh et al. [10]. The use of learnatgng with predicate ab-
straction has also been applied in the context of interfaethesis [1] and various types
of assume-guarantee proof rules for automated softwaigcation [3].

This work is related to our earlier project [7] that solves tomponent substi-
tutability problem in the context of verifyinmdividual component upgrades. A major
improvement of the current work is that it is aimed at venfythe component substi-
tutability in the presence afimultaneous upgrades of multiple componeAtsother
distinction of this work is that it provides an innovatiggnamicassume-guarantee rea-
soning framework for the compatibility check. The dynamature of the compatibility
check allows reusing previously computed assumptionsdeepor disprove the global
properties of the updated system.

Additionally, this paper gives a new solution to the contaémt check problem
presented in [7]. In our earlier work, the containment stegadlved using learning
techniques for regular sets and handles finite-state sgsbety. In contrast, the new
approach is extended to handle infinite-state C programsedier, this paper defines
a new technique based on simultaneous use of over and unmexapations obtained
via existential and universal abstractions.

3 Background and Notation

Let e denote the concatenation operator over sequencegartknote zero or more
applications ofe over X as usual. For any two sef§ andY we will denote the set
{zey|lze XANyeY}byXeY.

Definition 1 (Words and Traces).Given an alphabel’ and a set of atomic proposi-
tions AP we often say thatX, AP) is a state/event (SE) alphabet. For an SE alpha-
bet & = (X, AP), the set of words ovek is denoted byWord(f]) and defined as
Word(X) = (X ¢ 24F)*. The set of traces ove¥ is denoted bylrace (%) and defined
as Tmce(f) =24 o Word(f).

Thus a word or a trace is an alternating sequence of subsdt® aind elements of
X.. However a word always begins with an action and ends witht afggropositions
and can be empty. In contrast, a trace begins and ends withod peopositions and
cannot be empty.

Definition 2 (Doubly Labeled Automaton). A doubly labeled automaton (DLA) is a
7-tuple(S, Init, AP, L, X6, F) such that: (i)S is a finite set ofstates (ii) Init C S

is a set of initial states, (iiid P a finite set of (atomic) state propositions, (&) S —
24P a state-labeling function, (VX a finite set of events or actions (alphabet), (vi)
0 C 8§ x XY x S atransition relation, and (vii))f' C S is a set of final or accepting
states.

For any DLA with transition relatios we writeq —— ¢’ to meang’ € 6(q,). A
DLA is said to be deterministic (DDLA) iff for any € S, a € X andp C AP there
is at most ong’ € S such that; -~ ¢’ and£(q’) = p. DLAs are not more expressive
than standard finite automata since propositional labgloamn always be rewritten in
terms of actions [9]. However, we choose to use the DLA foismalfor the sake of
simplicity since it captures the essence of the state/dvasetd notation.

Definition 3 (Language).Let M = (S, Init, AP,L, X6, F) be a DLA andy =
(X, AP). Atracet € Tmce(f]) is accepted by iff t = p1,a1,p2,...,00n_1,Pn
and there exists a sequengg so, ..., s, of states ofdM/ such that: (i)s; € Init, (i)
sp € F, (iii)yfor 1 < i <mn, L(s;) = p;,and (i) for1 <i < n,s; 2 si41. The
language of\/ is denoted byL(M) and defined as the set of all traces acceptedhy

A language is said to be regular iff it is accepted by some Dile set of regular
languages is closed under union, intersection and complietien. DDLAS are equiva-
lent to DLAs as far as language acceptance is concernechénwbrds for any regular
languagel there is a DDLAM such thafl.(M) = L. Also every regular language
is accepted by a unique (up to isomorphism) minimal DDLA.

Definition 4 (Abstraction). Given two DLAsM; and M, we say thatM, is an ab-
straction ofM;, denoted by, T Mo, iff L(M;) C L(M,).

Definition 5 (Parallel Composition). Let M; = (51, Init1, AP1, L1, X1,61, F1)

and M, = (82, Inity, APo, Lo, X5,00, F) be two DLAs. The par-
allel composition of M; and M,, denoted by M; || Ms, is the DLA
(Sl X So, Inity x Inita, AP1 U APs, L, X1 U X5, 08, F1 X Fg), where: (I)

E(Sl, 52) = El(Sl) @] ,62(82), and (||)5 is such tha(Sl, 82) AN (8/1, 5/2) iff:
Vie{1,2}. (o & XiNsi=s)) \/ (v € 5 Ns; - s))

In other words, DLAs must synchronize on shared actions aodeed indepen-
dently on local actions. This notion of parallel compositis derived from CSP [19].

Definition 6 (Weakest Assumption).For any DLA M, and any safety property, ex-
pressed as a DLAy, there exists a weakest (w.r.t. thepreorder) DLA WA with the
following property: for any DLAE, M || E C ¢ iff E C WA [12]. In fact it can be
shown thatiWA is a DLA accepting the languadg M || %).

4 Containment

Recall that in the containment step we verify for each Z, that C; C Cl i.e., ev-
ery behavior ofC; is also a behavior oCi/. If C; Z Cl we also construct a sef;

of behaviors inBehw (C;) \ Behv(C;) which will be subsequently used for feedback
generation. This containment check is performed iterbtied component-wise as de-
picted in Figure 1 C'E refers to the counterexample generated during the veiditat
phase). For eache Z, the containment check proceeds as follows:

ii

G /
|
Over—approximate l/ ABSTRACTION J Under—approximate
M;
Refine| ‘ VERIFICATION Check:M; € M/ ‘ Refine

False + CE i True

Check:CE € G

Check:CE¢C/
Yes= CEcC\C/

No
VALIDATION 1

All behaviors are preserved

No

VALIDATION 2

Build: ¥ —CE
Report Feedback

Fig. 1. The containment phase of the substitutability framework.

1. Abstraction. Construct finite modeld/ and M’ such tha{C1) C; C M and(C2)
M C (Ji'. Note thatM is anover-approximatiorof C; and can be constructed by
standard predicate abstraction [13]. HoweV£ris constructed from’]i' via a modified
predicate abstraction which produceswder-approximatiorof its input C compo-
nent. We give an overview of predicate abstraction and thenntodified predicate
abstraction. Complete details of our predicate abstragtiocedure can be found else-
where [4].

Predicates and Valuations.Suppose we are given a set of predicates (pure C ex-
pressions)P. Each valuatiorV of P is simply a mapping fronP to {0, 1}. Thus if
P = {z < 1,y > 0} then the set of valuations @ is {(0,0), (0,1),(1,0),(1,1)}.
LetP = {p1,...,pn} andV be a valuation ofP. Then the concretization df is de-
noted by~(V) and defined asy(V) = A, X; whereX; = p; iff V(p;) = 1 and
—p; otherwise. For example consid®r = {z < 1,y > 0} andV = (0,1). Then
Y(V) = =(z < 1) Ay > 0).

Predicate Abstraction. Suppose thaf’; comprises of a set of C statemeftsnt =
{st1,..., sty }. Without loss of generality we assume that each statemefitisfeither
an assignment, arf - t hen- el se or agot o. Also we are given a set of predicafés

with set of valuationd/al. The general idea behind predicate abstraction is to reptes
a set of concrete states symbolically using a formula. Thespredicate abstraction
C; w.r.t. P is an DLA M whose set of states Stmt x Val. Intuitively each state
s = (st,V) of M represents the set of all concrete execution state#fsC; such that
st is the next statement to be executed@ ahd the expression(V) is satisfied by the
memory configuration at. In such a case we often say s to highlight the fact that
each state ofi/ can be thought of as a set of concrete execution statés. of

The transitions of\/ are defined such that/ is an over-approximation of;; via
existentialabstraction. For example, let = (st1, V1) andss = (st2, Va) be two states
of M such thatt; is an assignment. TheWl contains a transition fromy, to s, if there
is a transition fronsomeconcrete state; € s; to some concrete state € s». It turns
out that this is equivalent to: (it being the next statement to be executed after
and (ii) the formuld? P{~(V2) }[st1] Av(V1) being satisfiable wher@ P{~(V>)}[st1]
denotes the weakest preconditiongf,) w.r.t. st;. Other kinds of statements are
handled analogously.

Modified Predicate Abstraction. In contrast our modified predicate abstraction
constructs an under-approximation of the concrete syst@nuniversalabstraction.
More precisely suppos@; comprises of a set of C statemeiSts:t’ and we are given a
set of predicate®’ with set of valuationg/al’. Then the modified predicate abstraction
of ¢ w.r.t. P’ is an DLA M’ whose set of states $¢mt’ x Val’. The correspondence
between the states df/’ and the execution states 6f is exactly as in the case of
predicate abstraction. The difference is in the way thesitmms of A/’ are defined.
More precisely, lets; = (st1,V1) andss = (sta,Vs) be two states ofif’ such that
sty is an assignment. The’ contains a transition fromy to s, if there is a transition
from everyconcrete state; € s; to some concrete state € s,. This is equivalent to:
(i) st2 being the next statement to be executed aftgrand (ii) the formulay(V,) —

W P{~v(V2)}[st1] being valid. Other kinds of statements are handled anakigolhe
satisfiability and validity of formulas are checked usinggatomated theorem prover.

2. Verification. Verify if M T M’ (or alternativelyM \ B C M’ if the upgrade
involved some bug fix and the bug was defined as a BAIf so then from(C1) and
(C2) above we know thaf; C C{ and we terminate with success. Otherwise we obtain
a counterexampl€'E.

3. Validation 1. Check if CF is a real behavior of’;. To do this we first compute the set
S of concrete states af; that can simulate’E. This is done via symbolic simulation
and the result is a formula that represents. Then CFE is a real behavior of’; iff

S #£ 0, i.e., iff ¢ is satisfiable. IfCF is a real behavior of’;, we proceed to the next
step. Otherwise we refine mod#l by constructing a new set of predicaféand repeat
from Step 2. The refinement step is done according to the guveémplemented in the
MAGIC [4] tool.

4. Validation 2. Check if CE is nota real behavior of; . To do this we first compute
the setS’ of concrete states df; that can simulate’E. This is done as above and the
result is again a formula that represents’. Then CE is not a real behavior oCl-'

iff S’ =0, i.e., iff ¢ is unsatisfiable. iCE is not a real behavior of’;, we know that
CE € Behv(C;) \ Behv(C;). We addCE to F; and stop. Otherwise we refind’ by
constructing a new set of predicate$ and repeat from Step 2. This refinement step
is an antithesis of standard abstraction-refinement stradisthe valid behaviolCE
back toM’. However it is conceptually similar to standard abstraetiefinement and
we omit its details in this article.

Note that the above process terminates as soon as it addgla lseéhavior ta%;.
However it can be extended to generate a set of behavidrsas follows. First a set of
counterexampleﬁ is constructed in Step 2. Then each elementéfis processed
via Steps 3 and 4 and every counterexample which belongshat not toCi/ is added
to F;. The use ofF; to provide feedback to developers showing how to correct the
updated components is discussed in Section 6.

5 Compatibility

Recall that the compatibility check is aimed at ensuring tha upgraded system sat-
isfies global safety specifications. Our compatibility dapoocedure involves two key
paradigms -dynamicregular set learning and assume guarantee reasoning. We firs
present these two techniques and then describe their usg ioverall compatibility
algorithm.

5.1 Dynamic Regular Set Learning

Central to our compatibility check procedure is a raymamicalgorithm to learn reg-
ular languages. Our algorithm is based on fHealgorithm developed by Angluin [2].
The compatibility check uses a state/event version oflthé¢hat is a straight forward
extension of the original algorithm (for simplicity we wilefer to both ag.*). The
detailed description of the state/evdritalgorithm and the proof of its correctness and
complexity analysis can be found in [20]. We will first presthre state/event learning
algorithm and then describedynamicversion of it that we actually use for checking
compatibility. We will denote the symmetric difference et setsX andY by X ¢ Y,
ie,peXapYiff pe X\YorpeY\X.

The L* Algorithm. Let U be an unknown regular language over some SE alphabet
Y = (X, AP). In order to learnJ, L* interacts with aminimally adequate teacher
MAT for U, which can provide Boolean answers the following two kinflgueries:

~

1. MembershipGiven ap € Trace(X), MAT returnsTRUEIff p € U.
2. Candidate Given a DDLAD, MAT returnsTRUE iff L(D) = U. If MAT returns
FALSE, it also returns a counterexample trace= (D) & U.

~

Given an unknown regular language C Trace(X) and aMAT for U, the L*
algorithmiteratively constructs a minimal DDLAD such thatZ.(D) = U. It maintains

an observation tablgs, E, T) where: (i)S is a prefix-closed set ovélrace (X)) labeling
the rows of the table, (iiF a suffix-closed set oveiWord(X) labeling the columns of

the table, and (i)l : (SU S e £) x E — {0,1} is the valuation of the table entries
such that:

VseSUSeX.Vec E.T[s,e] =1 — secclU

Additionally, foranys € SU S e 5, let us define a function, as follows:

Ve € E.rs(e) =T|s,€]
Given a trace € Trace(X) we write Last(t) to mean the last set of propositionstin
L* always ensures that the following invariant holds on théetafior any two distinct
s1,82 € S eitherry, # s, or Last(s1) # Last(s2). The table is said to belosedif
for everyt € S e X, there exist an € S such thatr, = r, and Last (s) = Last(t).

Let us denote the empty word by Then L* starts with a tabldS, F,T) such
thatS = 247, E = {\} and in each iteration proceeds as follows. It first updates th
table using membership queries till it is closed. Néxtbuilds a candidate DDLAD
from the table and makes a candidate query viithf the MAT returnsTRUE to the
candidate queryl.* returnsD and stops. Otherwisd,* updatest with a single word
(constructed from th&'F returned by the candidate query) and proceeds with the next
iteration. The complexity of.* is expressed by the following theorem [2, 20].

Theorem 1. If n is the number of states of the minimum DDLA acceptingnd m

is the upper bound on the length of any counterexample peovimy theM AT, then
the total running time of_* is bounded by a polynomial im andn. Moreover, the
observation table is of siz@(m?n? + mn?).

Dynamic L*. Normally L* initializes with: S = 247 and E = {\}. This can be
a drawback in cases where a previously learned candidateh@mce a table) exists
and we wish to restart learning using information from thevjsus table. In the fol-
lowing, we show (Theorem 2) that ff* begins with any non-emptyalid table then it
must terminate with the correct result. In particular, tdlsws us to perform our com-
patibility check dynamically by restarting* with any previously computed table by
re-validatingit instead of starting from an empty table

Definition 7 (Agreement).An observation tabl¢S, £, T') is said to agree with a reg-
ular languageU iff: V(s,e) € (SUS e X) x E, T(s,e) = 1iff see € U. Also,
(S, E,T) agrees with a candidate DDLA if it agrees withL(D).

Definition 8 (Validity). An observation tabl@ = (S, E,T) is said to be valid for a
languagel iff (S, E, T) agrees withl/. We say that a candidate derived from a closed
table7 is valid if 7 is valid.

Theorem 2. L* terminates with a correct result for any unknown languégstarting
from any valid table foiU.

2 A similar idea was also proposed in the contexadéptivemodel checking [14].

Proof. Letn be the number of states in the minimal DDIMy; such thail.(My) = U.
Note that both Theorem 1 and Lemma 5 from Angluin’s corressrgoof forL* [2]

hold for valid and closed tables and candidates consistéhttivem. It follows from
Theorem 1 and Lemma 5 that can always make a valid table closed and hence is
able to construct a candidate, sBy with at mostn states. We now show that every
subsequent candidate must have at least one more stat®than

A candidate query witlD either returngRUE or a counterexampl€E € L(D) ®
U. Note that the table must agree withsince D is consistent with it. Also since the
table is valid, it must agree with/. Therefore,CE ¢ (S U S ¢ X) ¢ E and will be
added toS. Again, a valid and closed tablgs’, E’,T’) must be obtained eventually
after addingCE. Let D’ be the corresponding candidate.

Now, D’ is consistent withl” sinceT” extendsI'. Also D’ agrees with\{y; as far
acceptingCFE is concerned whileD does not. Hencé’ is inequivalent taD and by
Theorem 1 in Angluin’s proof, must have at least one morestetnD. Hence, starting
from D, L* can make at most — 1 incorrect candidates, since the number of states is
initially at least one, always increases monotonically ar&y not exceed — 1. Since
L* must keep making new candidates as long as it is running, st iraminate with a
correct candidat@/;. O

Suppose we have a talilewhich is valid for an unknown languagéand we have
a new unknown languadé’ different fromU. Suppose we want to leatf by starting
L* with table7. Note that in general” will not be valid forU’ and hence starting from
7T will not be appropriate. However, we can fivallidate7 against/’ and then starf*
from the validated . Theorem 2 provides the key insight behind the correctnigbsn
procedure. As we shall see, this idea forms the backbonerafymamic compatibility
check procedure (cf. Section 5.3).

5.2 Assume-Guarantee Reasoning

Along with dynamicL*, we also use assume-guarantee style compositional reggoni
check compatibility. Given a set of component DLAS;, . .., M,, and a specification
DLA ¢, the following non-circular ruléAG [17] can be used to verifg/; || --- |
M, C ¢:

M |AiCo
My |- || Mn E A
Myl [M, Co

In the above,A; is an DLA representing the assumption about the environment
under which)/; is expected to operate correctly. As also observed by Ggiblet
al. [10], the second premise is itself an instance of theléopt proof-obligation with
n — 1 component DLAs. Henc#G can be applied to decompose it further.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new componentthe context of the
original component assembly is presented in Figure 2. Gareold component as-
semblyC = {C4,..., C,}, and a set of new componerts = {C! | i € Z} (where

T C {1,...,n}), it checks if a safety property holds in the new assembly. We first
present an overview of the compatibility procedure and thisouss its implementation
in detail. The procedure usedynamicCheckalgorithm, and is done in an iterative
abstraction refinement style as follows:

1. Use predicate abstraction to obtain finite DLA modeéls whereM; is constructed
from C; if i ¢ T and fromC if i € Z. The abstraction is carried out component-
wise. LetM = {My, ..., M,}.

2. Apply DynamicCheckon M. If the result isTRUE the compatibility check termi-
nates successfully. Otherwise we obtain a counterexatiple

3. Check if CF is a valid counterexample. Once again this is done compeniset
If CFE isvalid, the compatibility check terminates unsucces$gfuith CE as coun-
terexample. Otherwise we go to the next step.

4. Refine a specific model, sady}, such that the spuriouSE is eliminated. Repeat
from Step 2.

Overview of DynamicCheck. We first present an overview of the algorithm for two
DLAs and then generalize it to an arbitrary collection of Ddi.ASuppose we have two
old DLAs M, M, and a property DLAy. We assume that we previously tried to verify
M; || M2 C ¢ usingDynamicCheck The algorithmDynamicCheck uses dynamic
L* to learn appropriate assumptions that can discharge th@ges ofAG. In particular
suppose that while trying to verify/; || M> C ¢, DynamicCheckhad constructed an
observation tablg".

Now suppose we have new versiohg, M} for M, M,. Note than in general it
could be that eithe®s] or M is identical to its old versiorDynamicCheckwill now
reuse7Z and invoke the dynamié&* algorithm to automatically learn an assumption
A’ such that: (i)M; || A’ C ¢ and (ii) M5 T A’. More preciselyDynamicCheck
proceeds iteratively as follows:

Old Components New Components
{Cligr} {Clien
””””””””” Predicate = — ==« ppstracton
M ={Mg,...,Mp}
m Check: = ¢ | | reinear
True l False + CE
New Components are Substitutable Yes

New Components are not Substitutable
CE provided

Fig. 2. The compatibility phase of the substitutability framework

1. ltchecksifM; = Mj. If so, it starts learning from the previous talilei.e., it sets
7' :=T. Otherwise it re-validate® against)/; to obtain a new tablg”.

2. It derives a conjecturd’ from 7’ and checks if\M; C A’. If this check passes
it terminates withTRUE and the new assumptiof’. Otherwise it obtains a coun-
terexampleCE.

3. ItanalyzesCE to see ifCE corresponds to a real counterexampléfo || M, C
. If so, it constructs such a counterexample and terminataspaL SE. Otherwise
it updates7’ using CE.

4. 1t makes7”’ closed by making membership queries and repeats from Step 2.

Generalized DynamicCheck. We first describe the key ideas that enable us to reuse
the previous assumptions and then present the comipietamicCheckalgorithm for
multiple DLAs. Note that due to its dynamic nature, the aidpon will be able tdocally
identify the set of assumptions that need to be modified t@liglate the system.

Incremental Changes between Successive AssumptionRecall that thel.* algo-
rithm maintains an observation takl&, £, T') corresponding to an assumptignfor
every componend/. During an initial compatibility check, this table storémtinfor-
mation about membership of the current set of traces in anawk languagé/ (i.e.,
the language of theveakest assumptidar M). Upgrading the componeit modifies
this unknown language for the corresponding assumptiam fifoto say,U’. There-
fore, checking compatibility after an upgrade requires tha learner must compute a
new assumption’ corresponding t&/’. In most cases, the language&4) andL(A’)
may differ only slightlyand hence the information about behaviorsdofs reusedin
computingA’.

Table Re-validation. The originalL* algorithm computes!’ starting from an empty
table. However, as mentioned before, a more efficient alyorivould intend to reuse
the previously inferred set of elements®fandE to learnA’. The result in Section 5.1
(Theorem 2) precisely enables thé algorithm to achieve this goal. In particular, since
L* terminates starting from ansalid table, the assumption learner first obtains a valid
table by reusing words iy and E: updateT” by asking membership queries w.Lx!
foreachp € (SUS e X)e E. The valid tablg S, E, T’) hence obtained is subsequently
made closed and then learning proceeds in the normal fashiismallows the compat-
ibility check to restart from any previous set of assumpibyre-validatingthem. The
Generate Assumption module implements this feature.

Overall DynamicCheck Procedure. The DynamicCheck procedure instantiates the
AG rule forn components and enables checking multiple upgrades sinealtsly by
reusing previous assumptions and verification resulthérdescription, we denote the
previous and the new versions of a component DLABwndM’ and the previous and
the new versions of a component assemblies\yand M’ respectively. For ease of
description, we always use a propetty,to denote the right hand side of the top-level
proof obligation of the compositional rule. We denote thedified property at each

% Note that under the recursive application of the compétjbidheck procedure the updated
propertyy’ corresponds to an assumption from the previous recursienh le

recursion level of the algorithm hy’. The old and new assumptions are denotediby
and A’ respectively.

CcoNoourwNR

DynamicCheck(M’, ') returns counterexample orRUE
let M’ =first element ofM’;
if (M’ = {M'})
if (M # M’ orp # ¢')return (M’ C ¢');
else return M C ¢;
A’ := GenerateAssumptior{M’, ©');
if(A#A or M\ M # M\ M)
CE := DynamicCheck M’ \ M’, A");
elseCE := DynamicCheck M \ M, A);
while(CE is non-empty)
if (M’ || CE C ¢')
A’ := UpdateAssumption(A’, CE);
A’ := GenerateAssumption(M’, ¢');
CE = DynamicCheck(M' \ M’, A");
else return a witness counterexampleFE to M’ | CE Z ¢';
return TRUE;

Fig. 3. Pseudo-code for efficient compatibility check

Figure 3 presents the pseudo-code of the algoriymamicCheck to perform
the compatibility check. Lines (1-4) describe the case wheénontains only one com-
ponent. In Line 5, an assumptioff corresponding ta\/’ and ¢’ is generated using
dynamicL* such thatM’ || A’ C ¢'. Lines (6-8) describe recursive invocation of
DynamicCheck on M \ M against propertyl’. Finally, lines (9-15) show how the
algorithm detects a counterexampl# and updatesd’ with it or terminates with a
TRUE/FALSE result. The salient features of this algorithm are the foihgy:

— GenerateAssumption (line 5) does not generate new assumptions every time
DynamicCheck is invoked. Instead, it reuses (by re-validating if necegshe
assumptiord computed in the previous compatibility check. Wh@R is used to
updated, GenerateAssumption (line 12) does not need to re-validatesince
it must be validated previously.

— Verification checks are repeated on a compoiéhfor a collection of components
M\ M’)only if itis (they are) found to be different from the preumversiom\/
(M\ M) or if the corresponding propertyhas changed (lines 3,7,12). Otherwise,
the previously computed result is re-used (lines 4,8).

The correctness ddynamicCheckfollows from the following theorem.

Theorem 3. Given modified\’ andy’, DynamicCheckalgorithm always terminates
with eitherTRUE or a counterexampl€'E to M’ E .

We use the notion of weakest assumptions in proving the cimess ofDynam-
icCheck We know that for any DLAM, there must exist a weakest environment

assumption DLAWA such thatM || E¢ iff E T WA. Suppose, we have a sys-

tem of components\/y,..., M, and a global property. Consider rules of form
M, || AAC A 1(1<i<n-—1,4=¢)andM, C A,_; as used in our recursive
procedure to show that/; || .. | M, C . Itis clear that a weakest assumptitiii,

exists such thadf, | WA; C ¢. Given WA, it follows that WA, must exist so that
M, || WAy, C WA,. Therefore, by induction ol there must exist weakest assump-
tions WA, for1l <i <n—1,suchthafM; || WA; C WA;_1(1 <i<n—1, WAy = ¢)
andM,, C A,,_;. Also, by Theorem 2UpdateAssumption(A4, CE) must termi-
nate starting from any valid assumptieti with respect to/’ and a counterexample
CEeLA)aU.

Proof. Suppose, without loss of generality, that component DA is upgraded. Note
that after an upgrade, a weakest assumpitiatf (possibly different fromi4) must
exist for everyM’ € M’. We proceed by induction over the sizef M'. In the base
case, itis clear that we need to model ch&¢kagainsty’ only if either M or ¢ changed
(line 3). This either returns a counterexamplé{é C ' or the previous\/ C ¢ (line
4) result holds.

Assume for the inductive case tHaynamicCheck (M’\ M’, A’) terminates with
either TRUE or a counterexampl€E. It is clear from its definition tha#l” computed
by GenerateAssumption (line 5) is valid. If line 6 holds, i.eA” # A or M\ M #
M\ M’ then by inductive hypothesis, execution of line 7 termisatéh either arRUE
result or a counterexampleéF'. Otherwise, the previously computéd result is used
(line 8). It remains to be shown that lines (9-15) computectireect return value based
on this result.

If this result isTRUE then it follows from the soundness of the assume-guarantee
rule thatM’ C ¢’ andDynamicCheck returnstrUE (line 15). If M’ || CE £ ¢’
(line 10), then by set-theoretic arguments based on theitiefis of A’ and CE,
we know thatM’ [Z P’ and a suitable witnes§'E’ (line 14) is returned by the
algorithm. Otherwise, sincel’ is valid, bothUpdateAssumption (line 11) and
GenerateAssumption (line 12) must terminate by learning a new assumption, say
A”, such thatM’ || A” C . It follows from the proof of correctness df* that
|A’] < |A”| and from the definition of weakest assumptions tht] < |WA'|. Also,
by inductive hypothesis, line 13 must terminate with therecr CE result. Hence,
lines 9-13 of thewhile loop may be executed only a finite number of times until
|A"| = |WA'|, when (by set-theoretic arguments) either the resulirRiSE (line 15)
or a witness counterexample®’ (line 14) for M’ iZ P’ is returned.

O

Further optimizations. Recall that our procedure reuses assumptions generaied dur
previous compatibility checks. We further optimize it beidifying a subset of assump-
tions that have to be re-validated at the initializatiorhaf hext check. This optimization
is enabled by the following lemma whose proof follows dikgeétom Theorem 3 and
definition of weakest assumptions.

Lemmal. Let M = {M;,...,M,} be an assembly of componentd, =
{A1,..., A,_1} be a set of previously computed assumptionsand {1,...,n} be

an index set. Also, let)M] | i € Z} be the set of new componentsk lis the minimum
index ofZ, then it is sufficient foDynamicCheckto re-validate only the assumptions
inthe set{A4; | j > kA j<n}.

6 Feedback

Recall that for someé € Z, if our containment check detects th@t £ Cl-', it also
computes a sef;. Intuitively each element af; represents a behavior ¢f which is
not a behavior oCi/. We now present our process of generating feedback ffpnin
the rest of this section we will writ€’, ¢" andF to meanC;, Ci/ and.F; respectively.

Consider any behaviar in 7. Recall thatr is a trace of a DLAM obtained by
predicate abstraction @f. By simulatingr on M, we construct an alternating sequence
Rep(m) = (s1,a1,..., s,) Of states and actions @ff corresponding ter. Recall from
our earlier discussion of predicate abstraction (cf. 8act) that each; is of the form
(st;, V;) wherest; is a statement of’ andV; is a predicate valuation. ThuBep(7) =
<(St1, Vl), Oy ey (Stn, Vn)>

We also know thatr represents an actual behavior@fbut not an actual behavior
of ¢'. Thus, there is a prefiRref () of 7 such thatPref () represents a behavior of
C’. However any extension dPref () is no longer a valid behavior af’. Note that
Pref () can be constructed by simulatingon C”. Let us denote the suffix of after
Pref (rr) by Suff (r). SincePref () is an actual behavior of” we can also construct
a representation faPref (7) in terms of the statements and predicate valuatior@ of
Let us denote this representation Byp’ (Pref (r)).

As our feedback we output, for each € F, the following representations:
Rep(Pref (m)), Rep(Suff (7)) and Rep’(Pref ()). Note that such feedback allows us
to identify the exactlivergencegpoint of = beyond which it ceases to correspond to any
concrete behavior of. Since the feedback refers to program statement, it allets u
understand at the source code level whys able matchr completely butC” is forced
to diverge fromr beyondPref (7). This makes it easier to modify’ so as to add back
to it the missing behaviar.

7 Implementation and Experimental Evaluation

We implemented and evaluated the compatibility check pfasehecking component
substitutability in the ©MFORT framework. @ MFORT extracts abstract component
DLA models from C programs using predicate abstractionlsib @erves as a/AT
(cf. Section 5.1) for learning assumptions in the complitibcheck. If the compati-
bility check returns a counterexample, the counterexawgdldation and abstraction-
refinement modules of @uFORT are employed to check for spuriousness and do re-
finement, if necessary.

We validated the component substitutability framework leshverifying up-
grades of a benchmark provided to us by our industrial pgrtédgB Inc.
(ht t p: / / www. abb. com). The benchmarks consist of seven components which to-
gether implement an interprocess communication (IPC)gait The combined state-
space is ovet (5.

Upgrade#(Prop|} Mem. Queriesl ;4 (Msec)T.y (Msec
ipc1(Pr) 279 2260 13
ipc1 (Py) 308 1694 14
ipca(Pr) 358 3286 17
ipca(Ps) 232 805 10
ipcs(Pr) 363 3624 17
ipcs(Py) 258 1649 14
ipca(Pr) 355 1102 24

Table 1. Comparison of times required for original verificatiofi.{;;) and verification on up-
grade .y) by DynamicCheck. #Mem. Queries denotes the total number of membership
gueries made during verification of the original assembly.

We used a set of properties describing functionality of thefied portion of the
IPC protocol. We used upgrades of thete-queug(ipc;) and theipc-queugipcs and
ipc3) components. The upgrades had both missing and extra loefaompared to
their original versions. We verified two propertieB, (and P») before and after the
upgrades. We also verified the properties on a simultangogimde {pc4) of both the
componentsP; specifies that a process may write data intoiffeequeueonly after it
obtains a lock for the corresponding critical secti®y specifies an order in which data
may be written into the ipc-queue. Table 1 shows the compabistween time required
for initial verification of the IPC system with the time takbp DynamicCheck for
verification of upgrades. We observed that the previousheggted assumptions in all
the cases were sufficient to prove the properties on the dpdraystem also. Hence,
the compatibility check succeeded ismall fraction of timgT,,) as compared to the
time for compositional verificatioril(,;,) of the original system.

8 Conclusions and Future Work

We proposed a solution to the critical and vital problem ahponent substitutabil-
ity consisting of two phasegontainmentnd compatibility The compatibility check
performs compositional reasoning with help oflgnamicregular language inference
algorithm and a model checker. Our experiments confirm thatdynamic approach
is more effective than complete re-validation of the syséftar an upgrade. The con-
tainment check detects behaviors which were present inaaoponent before but not
after the upgrade. These behaviors are used to constrduot femback to the develop-
ers. We observed that the order of components used to digettes assume-guarantee
rules has a significant impact on the algorithm run times amté needs investigation.
We would further like to investigate a modification of it bd g a more efficient* al-
gorithm by Rivest et al. [18] in order to improve the performa ofDynamicCheck.

Acknowledgement. We thank the FM 2005 referees for their invaluable commemds a
suggestions. The first author is also grateful to CorinaaSaReanu and Dimitra Gian-
nakopoulou for insightful discussions on automated assguagantee and learning.

References

1.

11.

12.

13.

14.

15.

16.

17.

18.

19

20.

R. Alur, P. Cerny, G. Gupta, P. Madhusudan, W. Nam, and AaSkava. Synthesis of
interface specifications for Java classesSymp. on Principles Of Programming Languages
(POPL), 2005.

. D. Angluin. Learning regular sets from queries and cawxi@mples. Innformation and

Computationvolume 75(2), pages 87-106, 1987.

. S. Chaki, E. Clarke, D. Giannakopoulou, and C. S. Pasare&bstraction and assume-

guarantee reasoning for automated software verificatiechfical Report 05.02, Research
Institute for Advanced Computer Science (RIACS), 2004.

. S.Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichmad & Yorav. Efficient verification

of sequential and concurrent C prograrRsrmal Methods in System Desidft5(2—3), 2004.

. S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N.&irBtate/event-based software

model checking. Inntegrated Formal Methodsolume 2999, pages 128-147. LNCS, 2004.

. S. Chaki, J. lvers, N. Sharygina, and K. Wallnau. The CdRiFeasoning framework. In

Proceedings of Computer Aided Verification (CAR05.

. S. Chaki, N. Sharygina, and N. Sinha. Verification of eiavsoftware. In3rd Workshop

on Spec. and Ver. of Component-based Systems, ESEQEBGBE

. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, M. JurdZinsand F. Y. C. Mang. Inter-

face compatibility checking for software modules.Rroceedings of the 14th International
Conference on Computer-Aided Verificatipages 428-441. LNCS 2404, Springer-Verlag,
2002.

. E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.
. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareaearning assumptions for com-

positional verification. InTools and Algorithms for Construction and Analysis of Syste
volume 2619. LNCS, Springer-Verlag, 2003.

L. de Alfaro and T. A. Henzinger. Interface automataPmceedings of the Ninth Annual
Symposium on Foundations of Software Engineery@eM Press, 2001.

D. Giannakopoulou, C. S. Pasareanu, and H. BarringsurAgtion generation for software
component verification. IRroceedings of the ASE002.

S. Graf and H. Saidi. Construction of abstract statphyavith PVS. InProceedings of
Computer Aided Verificatiqri997.

A. Groce, D. Peled, and M. Yannakakis. Adaptive modetkimg. InTools and Algorithms
for Construction and Analysis of Systerpages 357-370. Springer-Verlag, 2002.
MAGIC. http://www.cs.cmu.edu/ chaki/magic.

S. McCamant and M. D. Ernst. Early identification of ingatibilities in multi-component
upgrades. IEECOOP 2004 — Object-Oriented Programming, 18th Europeanf&ence
Oslo, Norway, 2004.

A. Pnueli. In transition from global to modular tempaedisoning about programs. llogics
and Models of Concurrent Systenpmges 123-144, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

R. L. Rivest and R. E. Schapire. Inference of finite autanuging homing sequences. In
Information and Computatigrvolume 103(2), pages 299-347, 1993.

A. W. RoscoeThe Theory and Practice of Concurrendrentice-Hall Int., 1997.

Learning for software. http://www.sei.cmu.edu/gtafaki/publications/learn-se-trace.pdf.

