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Abstract. This paper presents anautomatedand compositionalprocedure to
solve the substitutability problem in the context of evolving software systems.
Our solution contributes two techniques for checking correctness of software up-
grades: 1) a technique based on simultaneous use of over and under approxima-
tions obtained via existential and universal abstractions; 2) a dynamicassume-
guarantee reasoning algorithm – previously generated component assumptions
are reused and altered on-the-fly to prove or disprove the global safety properties
on the updated system. When upgrades are found to be non-substitutable our so-
lution generates constructive feedback to developers showing how to improve the
components. The substitutability approach has been implemented and validated
in the COMFORT model checking tool set and we report encouraging resultson
an industrial benchmark.

Keywords: Software Model Checking, Verification of Evolving Software, Learn-
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1 Introduction

Software systems evolve throughout the product life-cycle. For example, any software
module (or component) is inevitably transformed as designstake shape, requirements
change, and bugs are discovered and fixed. In general such evolution results in the
removal of previous behaviors from the component and addition of new ones. Since
the behavior of the updated software component has no directcorrelation to that of its
older counterpart, substituting it directly can lead to twokinds of problems. First, the
removal of behavior can lead to unavailability of previously provided services. Second,
the addition of new behavior can lead to violation of global correctness properties that
were previously being respected.

In this context, thesubstitutabilityproblem has been defined [7] as the verification
of the following two criteria: (i) anyupdated portionof a software system must continue
to provide allservicesoffered by its earlier counterpart, and (ii) previously established
systemcorrectness propertiesmust remain valid for the new version of the software
system.

? This research was conducted as part of the CMU/SEI IRAD project on Verification of Evolving
Software and partially sponsored by the Office of Naval Research (ONR). The views and
conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of ONR, the U.S. Government
or any other entity.



Model checking can be used at each stage of a system’s evolution to solve both the
above problems. However, conventionally model checking isapplied to the entire sys-
tem after every update irrespective of the degree of modification involved. The amount
of time and effort required to verify an entire system can be prohibitive and repeat-
ing the exercise after each (even minor) system update is therefore impractical. In this
article we present anautomatedframework thatlocalizesthe necessary verification to
only modified system components, and thereby reduces dramatically the effort to check
substitutability after every system update. Note that our framework is general enough
to handle changes in the environment since the environment can also be modeled as a
component.

In our framework a component is essentially a C program communicating with other
components via blocking message passing. An assembly is a collection of such concur-
rently executing and mutually interacting components. We will define the notion of a
component’s behavior precisely later but for now let us denote the set of behaviors of a
componentC by Behv (C ). Given two componentsC andC ′ we will write C v C ′

to meanBehv (C ) ⊆ Behv (C ′).

Suppose we are given an assembly of components:C = {C1, . . . ,Cn}, and a safety
propertyϕ. Now suppose thatmultiplecomponents inC are upgraded. In other words,
consider an index setI ⊆ {1, . . . , n} such that for eachi ∈ I there is anewcomponent
C

′

i to be used in place of itsold versionCi. Our goal is to check the substitutability of
C

′

i for Ci in C for everyi ∈ I with respect to the propertyϕ. This paper presents a
framework that satisfies this goal by establishing the following two tasks:

Containment. Verify, for eachi ∈ I, that every behavior ofCi is also a behav-
ior of C

′

i , i.e., Ci v C
′

i . If Ci 6v C
′

i , we also construct a setFi of behaviors in
Behv (Ci) \ Behv (C

′

i ) which will be subsequently used for feedback generation. Note
that the upgrade may involve the removal of behaviors designated as errant, sayB. In
this case, we checkCi \B v C

′

i since behaviors ofB will clearly be absent inC
′

i .

Compatibility. Let us denote byC′ the assembly obtained fromC by replacing the
old componentCi with its new versionC

′

i for eachi ∈ I. Since in general it is not
the case that for eachi ∈ I, C

′

i v Ci. Therefore, the new assemblyC′ may have more
behaviors than the old assemblyC. HenceC′ might violateϕ even thoughC did not.
Thus, our second task is to verify thatC′ satisfies the safety propertyϕ (which would
imply that the new components can be safely integrated).

Note that checking compatibility is non-trivial because itrequires the verification of
a concurrent system where multiple components might have been modified. Moreover,
this task is complicated by the fact that our goal is to focus on the components that have
been modified.

The component substitutability framework is defined by the following new algo-
rithms: 1) a technique based on simultaneous use of over and under approximations
obtained via existential and universal abstractions for the containment check of the
substitutable components; 2) adynamicassume-guarantee algorithm developed for the
compatibility check. The algorithm is based on automata-theoretic learning for regular
sets. It is dynamic in the sense that it learns appropriate environment assumptions for
the new components byreusingthe environment assumptions for their older versions.



The framework uses an iterative abstraction/refinement paradigm for both the con-
tainment and compatibility check procedures. The abstraction-based approach is es-
sential since it not only enables the extraction of finite-state models from software
programs but also reduces the complexity of software verification. Details of the ab-
straction procedure and the abstraction/refinement process are beyond the scope of this
article and can be found in [4]. In summary, the developed component substitutability
framework has several advantageous features:

– It allowsmultiplecomponents to be upgraded simultaneously. This is crucial since
modifications in different components often interact non-trivially to maintain over-
all system safety and integrity. Hence such modifications must be analyzed jointly.

– It identifies features of an old component which are absent inits updated version.
It subsequently generates feedback to localize the modifications required to add the
missing features back.

– It is completely automated and usesdynamicassume-guarantee style reasoning to
scale to large software systems.

– It allows new components to have more behaviors than their old counterparts in
order be replaceable. Theextra behaviors are critical since they provide vendors
with flexibility to implement new features into the product upgrades. Our frame-
work verifies if these new behaviors do not violate previously established global
specifications of a component assembly1.

We employ state/event-based modeling techniques [5] to model and reason about
both the data and communication aspects of software. In particular we use the
state/event computational structures, called Doubly Labeled Automata (DLA) to model,
as well as to specify, software systems. We have implementedthe substitutability frame-
work as part of the COMFORT [6] reasoning framework, which is based on the C model
checkerMAGIC [4, 15]. We experimented with an industrial benchmark and report en-
couraging results in Section 7.

2 Related Work

Related projects often impose the restriction that every behavior of the new component
must also be a behavior of the old component. In such a case thenew component is said
to refine the old component. For instance, de Alfaro et al. [11, 8] define a notion of in-
terface automaton for modeling component interfaces and show compatibility between
components via refinement and consistency between interfaces. However, automated
techniques for constructing interface automata from component implementations are
not presented. In contrast, our approach automatically extracts conservative DLA mod-
els (which are similar to finite state interface automata) from component implementa-
tions. Moreover, we do not require refinement among the old components and their new
versions.

1 Verification of these new features remains a responsibilityof designers of the upgraded sys-
tems.



Ernst et al. [16] suggest a technique for checking compatibility of multi-component
upgrades. They derive consistency criteria by focusing on input/output component be-
havior only and abstract away the temporal information. Even though they state that
their abstractions are unsound in general, they report success in detecting important er-
rors. In contrast, our abstractions preserve temporal information about component be-
havior and are always sound. They also use a refinement-basednotion on the generated
consistency criteria for showing compatibility.

The application of learning is extremely useful from a pragmatic point of view since
it is amenable to complete automation, and is gaining rapid popularity [14] in formal
verification. The use of learning for automated assume-guarantee reasoning was pro-
posed originally by Cobleigh et al. [10]. The use of learningalong with predicate ab-
straction has also been applied in the context of interface synthesis [1] and various types
of assume-guarantee proof rules for automated software verification [3].

This work is related to our earlier project [7] that solves the component substi-
tutability problem in the context of verifyingindividualcomponent upgrades. A major
improvement of the current work is that it is aimed at verifying the component substi-
tutability in the presence ofsimultaneous upgrades of multiple components. Another
distinction of this work is that it provides an innovativedynamicassume-guarantee rea-
soning framework for the compatibility check. The dynamic nature of the compatibility
check allows reusing previously computed assumptions to prove or disprove the global
properties of the updated system.

Additionally, this paper gives a new solution to the containment check problem
presented in [7]. In our earlier work, the containment step is solved using learning
techniques for regular sets and handles finite-state systems only. In contrast, the new
approach is extended to handle infinite-state C programs. Moreover, this paper defines
a new technique based on simultaneous use of over and under approximations obtained
via existential and universal abstractions.

3 Background and Notation

Let • denote the concatenation operator over sequences andX∗ denote zero or more
applications of• overX as usual. For any two setsX andY we will denote the set
{x • y | x ∈ X ∧ y ∈ Y } by X • Y .

Definition 1 (Words and Traces).Given an alphabetΣ and a set of atomic proposi-
tionsAP we often say that(Σ,AP) is a state/event (SE) alphabet. For an SE alpha-
bet Σ̂ = (Σ,AP), the set of words over̂Σ is denoted byWord(Σ̂) and defined as
Word(Σ̂) = (Σ •2AP )∗. The set of traces over̂Σ is denoted byTrace(Σ̂) and defined
asTrace(Σ̂) = 2AP •Word(Σ̂).

Thus a word or a trace is an alternating sequence of subsets ofAP and elements of
Σ. However a word always begins with an action and ends with a set of propositions
and can be empty. In contrast, a trace begins and ends with a set of propositions and
cannot be empty.



Definition 2 (Doubly Labeled Automaton).A doubly labeled automaton (DLA) is a
7-tuple(S , Init ,AP ,L, Σ, δ,F ) such that: (i)S is a finite set ofstates, (ii) Init ⊆ S

is a set of initial states, (iii)AP a finite set of (atomic) state propositions, (iv)L : S →
2AP a state-labeling function, (v)Σ a finite set of events or actions (alphabet), (vi)
δ ⊆ S × Σ × S a transition relation, and (vii)F ⊆ S is a set of final or accepting
states.

For any DLA with transition relationδ we writeq
α
−→ q′ to meanq′ ∈ δ(q, α). A

DLA is said to be deterministic (DDLA) iff for anyq ∈ S , α ∈ Σ andp ⊆ AP there
is at most oneq′ ∈ S such thatq

α
−→ q′ andL(q′) = p. DLAs are not more expressive

than standard finite automata since propositional labelings can always be rewritten in
terms of actions [9]. However, we choose to use the DLA formalism for the sake of
simplicity since it captures the essence of the state/event-based notation.

Definition 3 (Language).Let M = (S , Init ,AP ,L, Σ, δ,F ) be a DLA andΣ̂ =

(Σ,AP). A tracet ∈ Trace(Σ̂) is accepted byM iff t = p1, α1, p2, . . . , αn−1, pn

and there exists a sequences1, s2, . . . , sn of states ofM such that: (i)s1 ∈ Init , (ii)
sn ∈ F , (iii) for 1 ≤ i ≤ n, L(si) = pi, and (iii) for 1 ≤ i < n, si

αi−→ si+1. The
language ofM is denoted byL(M) and defined as the set of all traces accepted byM .

A language is said to be regular iff it is accepted by some DLA.The set of regular
languages is closed under union, intersection and complementation. DDLAs are equiva-
lent to DLAs as far as language acceptance is concerned. In other words for any regular
languageL there is a DDLAM such thatL(M) = L. Also every regular languageL
is accepted by a unique (up to isomorphism) minimal DDLA.

Definition 4 (Abstraction). Given two DLAsM1 andM2 we say thatM2 is an ab-
straction ofM1, denoted byM1 vM2, iff L(M1) ⊆ L(M2).

Definition 5 (Parallel Composition). Let M1 = (S1, Init1,AP1,L1, Σ1, δ1,F1)
and M2 = (S2, Init2,AP2,L2, Σ2, δ2,F2) be two DLAs. The par-
allel composition of M1 and M2, denoted by M1 ‖M2, is the DLA
(S1 × S2, Init1 × Init2,AP1 ∪ AP2,L, Σ1 ∪Σ2, δ,F1 × F2), where: (i)
L(s1, s2) = L1(s1) ∪ L2(s2), and (ii) δ is such that(s1, s2)

α
−→ (s′1, s

′

2) iff:

∀i ∈ {1, 2} � (α 6∈ Σi ∧ si = s′i)
∨

(α ∈ Σi ∧ si
α
−→ s′i)

In other words, DLAs must synchronize on shared actions and proceed indepen-
dently on local actions. This notion of parallel composition is derived from CSP [19].

Definition 6 (Weakest Assumption).For any DLAM , and any safety property, ex-
pressed as a DLAϕ, there exists a weakest (w.r.t. thev preorder) DLAWA with the
following property: for any DLAE, M ‖ E v ϕ iff E v WA [12]. In fact it can be
shown thatWA is a DLA accepting the languageL(M ‖ ϕ).



4 Containment

Recall that in the containment step we verify for eachi ∈ I, thatCi v C
′

i , i.e., ev-
ery behavior ofCi is also a behavior ofC

′

i . If Ci 6v C
′

i , we also construct a setFi

of behaviors inBehv (Ci) \ Behv (C
′

i ) which will be subsequently used for feedback
generation. This containment check is performed iteratively and component-wise as de-
picted in Figure 1 (CE refers to the counterexample generated during the verification
phase). For eachi ∈ I, the containment check proceeds as follows:

True

No All behaviors are preserved

No

Over−approximate Under−approximate

Report Feedback

False + CE

Yes

M′iMi

C′iCi

RefineRefine

Build: F ←CE

Check:CE 6∈C′i

Check:CE∈CiVALIDATION 1

VALIDATION 2

Check:Mi ⊆M′iVERIFICATION

ABSTRACTION

Yes⇒CE∈Ci \C′i

Fig. 1.The containment phase of the substitutability framework.

1. Abstraction. Construct finite modelsM andM ′ such that(C1) Ci v M and(C2)
M ′ v C

′

i . Note thatM is an over-approximationof Ci and can be constructed by
standard predicate abstraction [13]. HoweverM ′ is constructed fromC

′

i via a modified
predicate abstraction which produces anunder-approximationof its input C compo-
nent. We give an overview of predicate abstraction and then the modified predicate
abstraction. Complete details of our predicate abstraction procedure can be found else-
where [4].

Predicates and Valuations.Suppose we are given a set of predicates (pure C ex-
pressions)P . Each valuationV of P is simply a mapping fromP to {0, 1}. Thus if
P = {x < 1, y ≥ 0} then the set of valuations ofP is {(0, 0), (0, 1), (1, 0), (1, 1)}.
Let P = {p1, . . . , pn} andV be a valuation ofP . Then the concretization ofV is de-
noted byγ(V) and defined as:γ(V) ≡

∧n

i=1
Xi whereXi = pi iff V(pi) = 1 and

¬pi otherwise. For example considerP = {x < 1, y ≥ 0} andV = (0, 1). Then
γ(V) = ¬(x < 1) ∧ (y ≥ 0).

Predicate Abstraction.Suppose thatCi comprises of a set of C statementsStmt =
{st1, . . . , stk}. Without loss of generality we assume that each statement ofCi is either
an assignment, anif-then-else or agoto. Also we are given a set of predicatesP



with set of valuationsVal . The general idea behind predicate abstraction is to represent
a set of concrete states symbolically using a formula. Thus the predicate abstraction
Ci w.r.t. P is an DLA M whose set of states =Stmt × Val . Intuitively each state
s = (st ,V) of M represents the set of all concrete execution statesc of Ci such that
st is the next statement to be executed atc and the expressionγ(V) is satisfied by the
memory configuration atc. In such a case we often sayc ∈ s to highlight the fact that
each state ofM can be thought of as a set of concrete execution states ofCi.

The transitions ofM are defined such thatM is an over-approximation ofCi via
existentialabstraction. For example, lets1 = (st1,V1) ands2 = (st2,V2) be two states
of M such thatst1 is an assignment. ThenM contains a transition froms1 to s2 if there
is a transition fromsomeconcrete statec1 ∈ s1 to some concrete statec2 ∈ s2. It turns
out that this is equivalent to: (i)st2 being the next statement to be executed afterst1,
and (ii) the formulaWP{γ(V2)}[st1]∧γ(V1) being satisfiable whereWP{γ(V2)}[st1]
denotes the weakest precondition ofγ(V2) w.r.t. st1. Other kinds of statements are
handled analogously.

Modified Predicate Abstraction. In contrast our modified predicate abstraction
constructs an under-approximation of the concrete system via universalabstraction.
More precisely supposeC

′

i comprises of a set of C statementsStmt ′ and we are given a
set of predicatesP ′ with set of valuationsVal ′. Then the modified predicate abstraction
of C

′

i w.r.t.P ′ is an DLAM ′ whose set of states =Stmt ′ ×Val ′. The correspondence
between the states ofM ′ and the execution states ofC

′

i is exactly as in the case of
predicate abstraction. The difference is in the way the transitions ofM ′ are defined.
More precisely, lets1 = (st1,V1) ands2 = (st2,V2) be two states ofM ′ such that
st1 is an assignment. ThenM ′ contains a transition froms1 to s2 if there is a transition
from everyconcrete statec1 ∈ s1 to some concrete statec2 ∈ s2. This is equivalent to:
(i) st2 being the next statement to be executed afterst1, and (ii) the formulaγ(V1) =⇒
WP{γ(V2)}[st1] being valid. Other kinds of statements are handled analogously. The
satisfiability and validity of formulas are checked using anautomated theorem prover.

2. Verification. Verify if M v M ′ (or alternativelyM \ B v M ′ if the upgrade
involved some bug fix and the bug was defined as a DLAB). If so then from(C1) and
(C2) above we know thatCi v C

′

i and we terminate with success. Otherwise we obtain
a counterexampleCE .

3. Validation 1. Check ifCE is a real behavior ofCi. To do this we first compute the set
S of concrete states ofCi that can simulateCE . This is done via symbolic simulation
and the result is a formulaφ that representsS. ThenCE is a real behavior ofCi iff
S 6= ∅, i.e., iff φ is satisfiable. IfCE is a real behavior ofCi, we proceed to the next
step. Otherwise we refine modelM by constructing a new set of predicatesP and repeat
from Step 2. The refinement step is done according to the procedure implemented in the
MAGIC [4] tool.

4. Validation 2. Check ifCE is nota real behavior ofC
′

i . To do this we first compute
the setS′ of concrete states ofC

′

i that can simulateCE . This is done as above and the
result is again a formulaφ that representsS′. ThenCE is not a real behavior ofC

′

i



iff S′ = ∅, i.e., iff φ is unsatisfiable. IfCE is not a real behavior ofC
′

i , we know that
CE ∈ Behv (Ci) \ Behv (C

′

i ). We addCE toFi and stop. Otherwise we refineM ′ by
constructing a new set of predicatesP ′ and repeat from Step 2. This refinement step
is an antithesis of standard abstraction-refinement since it addsthe valid behaviorCE

back toM ′. However it is conceptually similar to standard abstraction-refinement and
we omit its details in this article.

Note that the above process terminates as soon as it adds a single behavior toFi.
However it can be extended to generate a set of behaviors inFi as follows. First a set of
counterexampleŝCE is constructed in Step 2. Then each element of̂CE is processed
via Steps 3 and 4 and every counterexample which belongs toCi but not toC

′

i is added
to Fi. The use ofFi to provide feedback to developers showing how to correct the
updated components is discussed in Section 6.

5 Compatibility

Recall that the compatibility check is aimed at ensuring that the upgraded system sat-
isfies global safety specifications. Our compatibility check procedure involves two key
paradigms -dynamicregular set learning and assume guarantee reasoning. We first
present these two techniques and then describe their use in our overall compatibility
algorithm.

5.1 Dynamic Regular Set Learning

Central to our compatibility check procedure is a newdynamicalgorithm to learn reg-
ular languages. Our algorithm is based on theL∗ algorithm developed by Angluin [2].
The compatibility check uses a state/event version of theL∗ that is a straight forward
extension of the original algorithm (for simplicity we willrefer to both asL∗). The
detailed description of the state/eventL∗ algorithm and the proof of its correctness and
complexity analysis can be found in [20]. We will first present the state/event learning
algorithm and then describe adynamicversion of it that we actually use for checking
compatibility. We will denote the symmetric difference of two setsX andY by X⊕Y ,
i.e,ρ ∈ X ⊕ Y iff ρ ∈ X \ Y or ρ ∈ Y \X .

The L
∗ Algorithm. Let U be an unknown regular language over some SE alphabet

Σ̂ = (Σ,AP). In order to learnU , L∗ interacts with aminimally adequate teacher
MAT for U , which can provide Boolean answers the following two kinds of queries:

1. Membership. Given aρ ∈ Trace(Σ̂), MAT returnsTRUE iff ρ ∈ U .
2. Candidate. Given a DDLAD, MAT returnsTRUE iff L(D) = U . If MAT returns

FALSE, it also returns a counterexample tracew ∈ L(D)⊕ U .

Given an unknown regular languageU ⊆ Trace(Σ̂) and aMAT for U , the L∗

algorithmiterativelyconstructs a minimal DDLAD such thatL(D) = U . It maintains
an observation table(S, E, T ) where: (i)S is a prefix-closed set overTrace(Σ̂) labeling
the rows of the table, (ii)E a suffix-closed set overWord(Σ̂) labeling the columns of



the table, and (iii)T : (S ∪ S • Σ̂) × E → {0, 1} is the valuation of the table entries
such that:

∀s ∈ S ∪ S • Σ̂ � ∀e ∈ E � T [s, e] = 1 ⇐⇒ s • e ∈ U

Additionally, for anys ∈ S ∪ S • Σ̂, let us define a functionrs as follows:

∀e ∈ E � rs(e) = T [s, e]

Given a tracet ∈ Trace(Σ̂) we writeLast(t) to mean the last set of propositions int.
L∗ always ensures that the following invariant holds on the table: for any two distinct
s1, s2 ∈ S eitherrs1

6= rs2
or Last(s1) 6= Last(s2). The table is said to beclosedif

for everyt ∈ S • Σ̂, there exist ans ∈ S such thatrs = rt andLast(s) = Last(t).
Let us denote the empty word byλ. ThenL∗ starts with a table(S, E, T ) such

thatS = 2AP , E = {λ} and in each iteration proceeds as follows. It first updates the
table using membership queries till it is closed. NextL∗ builds a candidate DDLAD
from the table and makes a candidate query withD. If the MAT returnsTRUE to the
candidate query,L∗ returnsD and stops. Otherwise,L∗ updatesE with a single word
(constructed from theCE returned by the candidate query) and proceeds with the next
iteration. The complexity ofL∗ is expressed by the following theorem [2, 20].

Theorem 1. If n is the number of states of the minimum DDLA acceptingU and m

is the upper bound on the length of any counterexample provided by theMAT , then
the total running time ofL∗ is bounded by a polynomial inm and n. Moreover, the
observation table is of sizeO(m2n2 + mn3).

Dynamic L
∗. Normally L∗ initializes with: S = 2AP andE = {λ}. This can be

a drawback in cases where a previously learned candidate (and hence a table) exists
and we wish to restart learning using information from the previous table. In the fol-
lowing, we show (Theorem 2) that ifL∗ begins with any non-emptyvalid table then it
must terminate with the correct result. In particular, thisallows us to perform our com-
patibility check dynamically by restartingL∗ with any previously computed table by
re-validatingit instead of starting from an empty table2.

Definition 7 (Agreement).An observation table(S, E, T ) is said to agree with a reg-
ular languageU iff: ∀(s, e) ∈ (S ∪ S • Σ̂) × E, T (s, e) = 1 iff s • e ∈ U . Also,
(S, E, T ) agrees with a candidate DDLAD if it agrees withL(D).

Definition 8 (Validity). An observation tableT = (S, E, T ) is said to be valid for a
languageU iff (S, E, T ) agrees withU . We say that a candidate derived from a closed
tableT is valid if T is valid.

Theorem 2. L∗ terminates with a correct result for any unknown languageU starting
from any valid table forU .

2 A similar idea was also proposed in the context ofadaptivemodel checking [14].



Proof. Let n be the number of states in the minimal DDLAMU such thatL(MU ) = U .
Note that both Theorem 1 and Lemma 5 from Angluin’s correctness proof forL∗ [2]
hold for valid and closed tables and candidates consistent with them. It follows from
Theorem 1 and Lemma 5 thatL∗ can always make a valid table closed and hence is
able to construct a candidate, sayD, with at mostn states. We now show that every
subsequent candidate must have at least one more state thanD.

A candidate query withD either returnsTRUE or a counterexampleCE ∈ L(D)⊕
U . Note that the table must agree withD sinceD is consistent with it. Also since the
table is valid, it must agree withU . Therefore,CE 6∈ (S ∪ S • Σ̂) • E and will be
added toS. Again, a valid and closed table(S′, E′, T ′) must be obtained eventually
after addingCE . Let D′ be the corresponding candidate.

Now, D′ is consistent withT sinceT ′ extendsT . Also D′ agrees withMU as far
acceptingCE is concerned whileD does not. HenceD′ is inequivalent toD and by
Theorem 1 in Angluin’s proof, must have at least one more state thanD. Hence, starting
from D, L∗ can make at mostn− 1 incorrect candidates, since the number of states is
initially at least one, always increases monotonically andmay not exceedn− 1. Since
L∗ must keep making new candidates as long as it is running, it must terminate with a
correct candidateMU . ut

Suppose we have a tableT which is valid for an unknown languageU and we have
a new unknown languageU ′ different fromU . Suppose we want to learnU ′ by starting
L∗ with tableT . Note that in generalT will not be valid forU ′ and hence starting from
T will not be appropriate. However, we can firstvalidateT againstU ′ and then startL∗

from the validatedT . Theorem 2 provides the key insight behind the correctness of this
procedure. As we shall see, this idea forms the backbone of our dynamic compatibility
check procedure (cf. Section 5.3).

5.2 Assume-Guarantee Reasoning

Along with dynamicL∗, we also use assume-guarantee style compositional reasoning to
check compatibility. Given a set of component DLAsM1, . . . , Mn and a specification
DLA ϕ, the following non-circular ruleAG [17] can be used to verifyM1 ‖ · · · ‖
Mn v ϕ:

M1 ‖ A1 v ϕ

M2 ‖ · · · ‖Mn v A1

M1 ‖ · · · ‖Mn v ϕ

In the above,A1 is an DLA representing the assumption about the environment
under whichM1 is expected to operate correctly. As also observed by Cobleigh et
al. [10], the second premise is itself an instance of the top-level proof-obligation with
n− 1 component DLAs. Hence,AG can be applied to decompose it further.

5.3 Compatibility Check for C Components

The procedure for checking compatibility of new componentsin the context of the
original component assembly is presented in Figure 2. Givenan old component as-
semblyC = {C1, . . . ,Cn}, and a set of new componentsC′ = {C′

i | i ∈ I} (where



I ⊆ {1, . . . , n}), it checks if a safety propertyϕ holds in the new assembly. We first
present an overview of the compatibility procedure and thendiscuss its implementation
in detail. The procedure uses aDynamicCheckalgorithm, and is done in an iterative
abstraction refinement style as follows:

1. Use predicate abstraction to obtain finite DLA modelsMi, whereMi is constructed
from Ci if i 6∈ I and fromC′

i if i ∈ I. The abstraction is carried out component-
wise. LetM = {M1, . . . , Mn}.

2. Apply DynamicCheckonM. If the result isTRUE the compatibility check termi-
nates successfully. Otherwise we obtain a counterexampleCE .

3. Check ifCE is a valid counterexample. Once again this is done component-wise.
If CE is valid, the compatibility check terminates unsuccessfully with CE as coun-
terexample. Otherwise we go to the next step.

4. Refine a specific model, sayMk, such that the spuriousCE is eliminated. Repeat
from Step 2.

Overview of DynamicCheck. We first present an overview of the algorithm for two
DLAs and then generalize it to an arbitrary collection of DLAs. Suppose we have two
old DLAs M1, M2 and a property DLAϕ. We assume that we previously tried to verify
M1 ‖ M2 v ϕ usingDynamicCheck. The algorithmDynamicCheck uses dynamic
L∗ to learn appropriate assumptions that can discharge the premises ofAG. In particular
suppose that while trying to verifyM1 ‖M2 v ϕ, DynamicCheckhad constructed an
observation tableT .

Now suppose we have new versionsM ′

1, M
′

2 for M1, M2. Note than in general it
could be that eitherM ′

1 or M ′

2 is identical to its old version.DynamicCheckwill now
reuseT and invoke the dynamicL∗ algorithm to automatically learn an assumption
A′ such that: (i)M ′

1 ‖ A′ v ϕ and (ii) M ′

2 v A′. More precisely,DynamicCheck
proceeds iteratively as follows:

New Components 

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

RefineM

M = {M1, . . . ,Mn}

Check:M � ϕ

New Components are Substitutable

New Components are not Substitutable

{Ci | i 6∈ I} {C′i | i ∈ I}

Fig. 2. The compatibility phase of the substitutability framework.



1. It checks ifM1 = M ′

1. If so, it starts learning from the previous tableT , i.e., it sets
T ′ := T . Otherwise it re-validatesT againstM ′

1 to obtain a new tableT ′.
2. It derives a conjectureA′ from T ′ and checks ifM ′

2 v A′. If this check passes
it terminates withTRUE and the new assumptionA′. Otherwise it obtains a coun-
terexampleCE .

3. It analyzesCE to see ifCE corresponds to a real counterexample toM ′

1 ‖ M ′

2 v
ϕ. If so, it constructs such a counterexample and terminates with FALSE. Otherwise
it updatesT ′ usingCE .

4. It makesT ′ closed by making membership queries and repeats from Step 2.

Generalized DynamicCheck. We first describe the key ideas that enable us to reuse
the previous assumptions and then present the completeDynamicCheckalgorithm for
multiple DLAs. Note that due to its dynamic nature, the algorithm will be able tolocally
identify the set of assumptions that need to be modified to re-validate the system.

Incremental Changes between Successive Assumptions.Recall that theL∗ algo-
rithm maintains an observation table(S, E, T ) corresponding to an assumptionA for
every componentM . During an initial compatibility check, this table stores the infor-
mation about membership of the current set of traces in an unknown languageU (i.e.,
the language of theweakest assumptionfor M ). Upgrading the componentM modifies
this unknown language for the corresponding assumption from U to say,U ′. There-
fore, checking compatibility after an upgrade requires that the learner must compute a
new assumptionA′ corresponding toU ′. In most cases, the languagesL(A) andL(A′)
may differ only slightlyand hence the information about behaviors ofA is reusedin
computingA′.

Table Re-validation. The originalL∗ algorithm computesA′ starting from an empty
table. However, as mentioned before, a more efficient algorithm would intend to reuse
the previously inferred set of elements ofS andE to learnA′. The result in Section 5.1
(Theorem 2) precisely enables theL∗ algorithm to achieve this goal. In particular, since
L∗ terminates starting from anyvalid table, the assumption learner first obtains a valid
table by reusing words inS andE: updateT by asking membership queries w.r.t.U ′

for eachρ ∈ (S∪S • Σ̂)•E. The valid table(S, E, T ′) hence obtained is subsequently
made closed and then learning proceeds in the normal fashion. This allows the compat-
ibility check to restart from any previous set of assumptions byre-validatingthem. The
GenerateAssumption module implements this feature.

Overall DynamicCheck Procedure. TheDynamicCheckprocedure instantiates the
AG rule for n components and enables checking multiple upgrades simultaneously by
reusing previous assumptions and verification results. In the description, we denote the
previous and the new versions of a component DLA byM andM ′ and the previous and
the new versions of a component assemblies byM andM′ respectively. For ease of
description, we always use a property,ϕ, to denote the right hand side of the top-level
proof obligation of the compositional rule. We denote the modified property3 at each

3 Note that under the recursive application of the compatibility check procedure the updated
propertyϕ′ corresponds to an assumption from the previous recursion level



recursion level of the algorithm byϕ′. The old and new assumptions are denoted byA

andA′ respectively.

DynamicCheck(M′, ϕ′) returns counterexample orTRUE

1: let M ′ = first element ofM′;
2: if (M′ = {M ′})
3: if (M 6= M ′ or ϕ 6= ϕ′) return (M ′ v ϕ′);
4: else returnM v ϕ;
5: A′ := GenerateAssumption(M ′, ϕ′);
6: if (A 6= A′ or M\ M 6= M′ \ M ′ )
7: CE := DynamicCheck(M′ \ M ′, A′);
8: elseCE := DynamicCheck(M\ M , A);
9: while(CE is non-empty)
10: if (M ′ ‖ CE v ϕ′)
11: A′ := UpdateAssumption(A′,CE );
12: A′ := GenerateAssumption(M ′, ϕ′);
13: CE = DynamicCheck(M′ \ M ′, A′);
14: else returna witness counterexampleCE to M ′ ‖ CE 6v ϕ′;
15: return TRUE;

Fig. 3. Pseudo-code for efficient compatibility check

Figure 3 presents the pseudo-code of the algorithmDynamicCheck to perform
the compatibility check. Lines (1-4) describe the case whenM contains only one com-
ponent. In Line 5, an assumptionA′ corresponding toM ′ andϕ′ is generated using
dynamicL∗ such thatM ′ ‖ A′ v ϕ′. Lines (6-8) describe recursive invocation of
DynamicCheck onM\M against propertyA′. Finally, lines (9-15) show how the
algorithm detects a counterexampleCE and updatesA′ with it or terminates with a
TRUE/FALSE result. The salient features of this algorithm are the following:

– GenerateAssumption (line 5) does not generate new assumptions every time
DynamicCheck is invoked. Instead, it reuses (by re-validating if necessary) the
assumptionA computed in the previous compatibility check. WhenCE is used to
updateA, GenerateAssumption (line 12) does not need to re-validateA since
it must be validated previously.

– Verification checks are repeated on a componentM ′ (or a collection of components
M′ \M ′) only if it is (they are) found to be different from the previous versionM
(M\M ) or if the corresponding propertyϕ has changed (lines 3,7,12). Otherwise,
the previously computed result is re-used (lines 4,8).

The correctness ofDynamicCheckfollows from the following theorem.

Theorem 3. Given modifiedM′ andϕ′, DynamicCheckalgorithm always terminates
with eitherTRUE or a counterexampleCE toM′ v ϕ′.

We use the notion of weakest assumptions in proving the correctness ofDynam-
icCheck. We know that for any DLAM , there must exist a weakest environment



assumption DLAWA such thatM ‖ Eϕ iff E v WA. Suppose, we have a sys-
tem of componentsM1, . . . , Mn and a global propertyϕ. Consider rules of form
Mi ‖ Ai v Ai−1(1 ≤ i ≤ n − 1, A0 = ϕ) andMn v An−1 as used in our recursive
procedure to show thatM1 ‖ .. ‖ Mn v ϕ. It is clear that a weakest assumptionWA1

exists such thatM1 ‖ WA1 v ϕ. GivenWA1, it follows thatWA2 must exist so that
M2 ‖ WA2 v WA1. Therefore, by induction oni, there must exist weakest assump-
tionsWAi for 1 ≤ i ≤ n−1, such thatMi ‖WAi vWAi−1(1 ≤ i ≤ n−1,WA0 = ϕ)
andMn v An−1. Also, by Theorem 2,UpdateAssumption(A,CE ) must termi-
nate starting from any valid assumptionA′ with respect toU ′ and a counterexample
CE ∈ L(A′)⊕ U ′.

Proof. Suppose, without loss of generality, that component DLAM ′, is upgraded. Note
that after an upgrade, a weakest assumptionWA′ (possibly different fromWA) must
exist for everyM ′ ∈ M′. We proceed by induction over the sizek ofM′. In the base
case, it is clear that we need to model checkM ′ againstϕ′ only if eitherM orϕ changed
(line 3). This either returns a counterexample toM ′ v ϕ′ or the previousM v ϕ (line
4) result holds.

Assume for the inductive case thatDynamicCheck(M′\M ′, A′) terminates with
eitherTRUE or a counterexampleCE . It is clear from its definition thatA′ computed
by GenerateAssumption (line 5) is valid. If line 6 holds, i.e,A′ 6= A orM\M 6=
M′\M ′ then by inductive hypothesis, execution of line 7 terminates with either aTRUE

result or a counterexampleCE . Otherwise, the previously computedCE result is used
(line 8). It remains to be shown that lines (9-15) compute thecorrect return value based
on this result.

If this result isTRUE then it follows from the soundness of the assume-guarantee
rule thatM′ v ϕ′ andDynamicCheck returnsTRUE (line 15). If M ′ ‖ CE 6v ϕ′

(line 10), then by set-theoretic arguments based on the definitions of A′ and CE ,
we know thatM′ 6v P ′ and a suitable witnessCE ′ (line 14) is returned by the
algorithm. Otherwise, sinceA′ is valid, bothUpdateAssumption (line 11) and
GenerateAssumption (line 12) must terminate by learning a new assumption, say
A′′, such thatM ′ ‖ A′′ v ϕ′. It follows from the proof of correctness ofL∗ that
|A′| < |A′′| and from the definition of weakest assumptions that|A′′| ≤ |WA′|. Also,
by inductive hypothesis, line 13 must terminate with the correct CE result. Hence,
lines 9-13 of thewhile loop may be executed only a finite number of times until
|A′′| = |WA′|, when (by set-theoretic arguments) either the result isTRUE (line 15)
or a witness counterexampleCE ′ (line 14) forM′ 6v P ′ is returned.

ut

Further optimizations. Recall that our procedure reuses assumptions generated during
previous compatibility checks. We further optimize it by identifying a subset of assump-
tions that have to be re-validated at the initialization of the next check. This optimization
is enabled by the following lemma whose proof follows directly from Theorem 3 and
definition of weakest assumptions.

Lemma 1. Let M = {M1, . . . , Mn} be an assembly of components,A =
{A1, . . . , An−1} be a set of previously computed assumptions andI ⊆ {1, . . . , n} be



an index set. Also, let{M ′

i | i ∈ I} be the set of new components. Ifk is the minimum
index ofI, then it is sufficient forDynamicCheck to re-validate only the assumptions
in the set{Aj | j ≥ k ∧ j ≤ n}.

6 Feedback

Recall that for somei ∈ I, if our containment check detects thatCi 6v C
′

i , it also
computes a setFi. Intuitively each element ofFi represents a behavior ofCi which is
not a behavior ofC

′

i . We now present our process of generating feedback fromFi. In
the rest of this section we will writeC , C

′

andF to meanCi, C
′

i andFi respectively.
Consider any behaviorπ in F . Recall thatπ is a trace of a DLAM obtained by

predicate abstraction ofC . By simulatingπ onM , we construct an alternating sequence
Rep(π) = 〈s1, α1, . . . , sn〉 of states and actions ofM corresponding toπ. Recall from
our earlier discussion of predicate abstraction (cf. Section 4) that eachsi is of the form
(st i,Vi) wherest i is a statement ofC andVi is a predicate valuation. Thus,Rep(π) =
〈(st1,V1), α1, . . . , (stn,Vn)〉.

We also know thatπ represents an actual behavior ofC but not an actual behavior
of C

′

. Thus, there is a prefixPref (π) of π such thatPref (π) represents a behavior of
C

′

. However any extension ofPref (π) is no longer a valid behavior ofC
′

. Note that
Pref (π) can be constructed by simulatingπ onC

′

. Let us denote the suffix ofπ after
Pref (π) by Suff (π). SincePref (π) is an actual behavior ofC

′

we can also construct
a representation forPref (π) in terms of the statements and predicate valuations ofC

′

.
Let us denote this representation byRep′(Pref (π)).

As our feedback we output, for eachπ ∈ F , the following representations:
Rep(Pref (π)), Rep(Suff (π)) andRep′(Pref (π)). Note that such feedback allows us
to identify the exactdivergencepoint ofπ beyond which it ceases to correspond to any
concrete behavior ofC

′

. Since the feedback refers to program statement, it allows us to
understand at the source code level whyC is able matchπ completely butC

′

is forced
to diverge fromπ beyondPref (π). This makes it easier to modifyC

′

so as to add back
to it the missing behaviorπ.

7 Implementation and Experimental Evaluation

We implemented and evaluated the compatibility check phasefor checking component
substitutability in the COMFORT framework. COMFORT extracts abstract component
DLA models from C programs using predicate abstraction. It also serves as aMAT

(cf. Section 5.1) for learning assumptions in the compatibility check. If the compati-
bility check returns a counterexample, the counterexamplevalidation and abstraction-
refinement modules of COMFORT are employed to check for spuriousness and do re-
finement, if necessary.

We validated the component substitutability framework while verifying up-
grades of a benchmark provided to us by our industrial partner, ABB Inc.
(http://www.abb.com). The benchmarks consist of seven components which to-
gether implement an interprocess communication (IPC) protocol. The combined state-
space is over106.



Upgrade#(Prop.)# Mem. QueriesTorig (msec)Tug (msec)
ipc1(P1) 279 2260 13
ipc1(P2) 308 1694 14
ipc2(P1) 358 3286 17
ipc2(P2) 232 805 10
ipc3(P1) 363 3624 17
ipc3(P2) 258 1649 14
ipc4(P1) 355 1102 24

Table 1. Comparison of times required for original verification (Torig) and verification on up-
grade (Tug) by DynamicCheck. #Mem. Queries denotes the total number of membership
queries made during verification of the original assembly.

We used a set of properties describing functionality of the verified portion of the
IPC protocol. We used upgrades of thewrite-queue(ipc1) and theipc-queue(ipc2 and
ipc3) components. The upgrades had both missing and extra behaviors compared to
their original versions. We verified two properties (P1 and P2) before and after the
upgrades. We also verified the properties on a simultaneous upgrade (ipc4) of both the
components.P1 specifies that a process may write data into theipc-queueonly after it
obtains a lock for the corresponding critical section.P2 specifies an order in which data
may be written into the ipc-queue. Table 1 shows the comparison between time required
for initial verification of the IPC system with the time takenby DynamicCheck for
verification of upgrades. We observed that the previously generated assumptions in all
the cases were sufficient to prove the properties on the upgraded system also. Hence,
the compatibility check succeeded in asmall fraction of time(Tug) as compared to the
time for compositional verification (Torig) of the original system.

8 Conclusions and Future Work

We proposed a solution to the critical and vital problem of component substitutabil-
ity consisting of two phases:containmentandcompatibility. The compatibility check
performs compositional reasoning with help of adynamicregular language inference
algorithm and a model checker. Our experiments confirm that the dynamic approach
is more effective than complete re-validation of the systemafter an upgrade. The con-
tainment check detects behaviors which were present in eachcomponent before but not
after the upgrade. These behaviors are used to construct useful feedback to the develop-
ers. We observed that the order of components used to discharge the assume-guarantee
rules has a significant impact on the algorithm run times and hence needs investigation.
We would further like to investigate a modification of it based on a more efficientL∗ al-
gorithm by Rivest et al. [18] in order to improve the performance ofDynamicCheck.
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