
Cogent: Accurate theorem proving for

program verification

Byron Cook Daniel Kroening Natasha Sharygina
Microsoft Research ETH Zurich Carnegie Mellon University

Abstract. Many symbolic software verification engines such as Slam
and ESC/Java rely on automatic theorem provers. The existing theorem
provers, such as Simplify, lack precise support for important program-
ming language constructs such as pointers, structures and unions. This
paper describes a theorem prover, Cogent, that accurately supports all
ANSI-C expressions. The prover’s implementation is based on a machine-
level interpretation of expressions into propositional logic, and supports
finite machine-level variables, bit operations, structures, unions, refer-
ences, pointers and pointer arithmetic. When used by Slam during the
model checking of over 300 benchmarks, Cogent’s improved accuracy
reduced the number of Slam timeouts by half, increased the number of
true errors found, and decreased the number of false errors.

1 Introduction

Program verification engines, such as symbolic model checkers and advanced
static checking tools, often employ automatic theorem provers for symbolic rea-
soning. For example, the static checkers ESC/Java [1] and Boogie [2] use the
Simplify [3] theorem prover to verify user-supplied invariants. The Slam [4]
software model-checker uses Zapato [5] for symbolic simulation of C programs.
The Blast [6] and Magic [7] tools use Simplify.

Most automatic theorem provers used in program verification are based on
either Nelson-Oppen or Shostak’s combination methods. These methods combine
various decision procedures to provide a rich logic for mathematical reasoning.
However, when applied to software verification, the fit between the program
verifier and the theorem prover is not ideal. The problem is that the theorem
provers are typically geared towards efficiency in the mathematical theories, such
as linear arithmetic over the integers. In reality, program verifiers rarely need
reasoning for unbounded integers, and the restriction to linear arithmetic is too
limiting. Moreover, because linear arithmetic over the integers is not a convex
theory (a restriction imposed by Nelson-Oppen and Shostak), the real numbers
are often used instead. Software programs, however, use the reals even less than
they do the integers.

The program verifiers must provide support for language features that are not
easily mapped into the logics supported by the existing theorem provers. These
features include pointers, pointer arithmetic, structures, unions, and the poten-
tial relationship between these features. When using provers such as Simplify,
the program verification tools typically approximate the semantics of these fea-
tures with axioms over the symbols used during the encoding. However, using
such axioms has a drawback—axioms can interact badly with the performance



heuristics that are often used by provers during axiom-instantiation. Addition-
ally, because bit vectors and arrays are not convex theories, many provers do
not support them. In those that can, the link between the non-convex decision
procedures can be unsatisfactory. As an example, checking equality between a
bit-vector and an integer variable is typically not supported.

Another problem that occurs when using prover such as Simplify or Za-
pato is that, when a query is not valid, the provers do not supply concrete
counterexamples. Some provers provide partial information on counterexamples.
However, in program verification this information rarely leads to concrete valu-
ations to the variables in a program, which is what a programmer most wants
when a program verification tool reports a potential bug in the source code. For
this reason, model checkers such as Slam, Blast, and Magic do not provide
valuations to the program variables when an error trace is presented to the user.

This paper addresses the following question: When verifying programs, can we
abandon the Nelson-Oppen/Shostak combination framework in favor of a prover
that performs a basic and precise translation of program expressions into propo-
sitional logic?

We present a tool, called Cogent, that implements an eager and accurate
translation of ANSI-C expressions (including features such as bitvectors, struc-
tures, unions, pointers and pointer arithmetic) into propositional logic. Cogent
then uses a propositional logic SAT-solver to prove or disprove the query. Because
Cogent’s method is based on this eager translation to propositional logic, the
models found by SAT-solvers can be directly converted to counterexamples to
the original C input query. We evaluated Cogent’s performance in Slam, Com-
FoRT [8], and Boogie. The experimental evidence indicates that Cogent’s
approach can be successfully used in lieu of conventional theorem provers.

2 Encoding into Propositional Logic

Cogent operates by eagerly translating expressions into propositional logic, and
then using a propositional logic SAT-solver. Cogent is inspired by the success
of CBMC and UCLID. UCLID encodes separation logic and uninterpreted
functions eagerly into propositional logic. It does not, however, support bitvector
logic. CBMC is a bounded model checker for C programming language and
eagerly compiles bitvector arithmetic into propositional logic. Cogent is also
used as a decision procedure for the SATABS [9] model checker. Cogent is a
theorem prover intended for use in an abstraction framework such as Slam or
Magic, and thus, does not implement any abstraction by itself.

In hardware verification, the encoding of arithmetic operators such as shift-
ing, addition, and even multiplication into propositional logic using arithmetic
circuit descriptions is a standard technique. We use a similar approach in Co-
gent, with several modifications:

– In addition to the features supported by the existing tools, Cogent’s trans-
lation allows the program verification tools to accurately reason about arith-
metic overflow, bit operations, structures, unions, pointers and pointer arith-
metic.



Model checking result Slam/Zapato Slam/Cogent

Property passes 243 264
Time threshold exceeded 39 17
Property violations found 17 19
Cases of abstraction-refinement failure 9 8

Fig. 1. Comparison of Slam/Zapato to Slam/Cogent on 308 device driver correct-
ness model checking benchmarks. The time threshold was set to 1200 seconds.

– Cogent uses non-determinism to accurately model the ambiguity in the
ANSI-C standard, i.e., for the representation of signed types. This differs
from the support for bitvectors from theorem provers such as CVC-lite [10].

– We use non-determinism to improve the encodings of some functions, such
as multiplication and division, in a way that is optimized for SAT-solvers.

The technical details of Cogent’s encoding for ANSI-C expressions includ-
ing the use of non-determinism for accuracy and efficiency, can be found in [11].

3 Experimental evaluation

Experiments with symbolic software model checking. We have integrated Co-
gent with Slam and compared the results to Slam using its current theorem
prover, Zapato. We ran Slam/Cogent on 308 model checking benchmarks.
The results are summarized in Fig. 1.

Slam/Cogent outperforms Slam/Zapato. Notably, the number of cases
where Slam exceeded the 1200s time threshold was reduced by half. As a result,
two additional device driver bugs were found. The cases where Slam failed to
refine the abstraction [12] were effectively unchanged. During Slam’s execution,
the provers actually returned different results in some cases. This is expected,
as the provers support different logics. For this reason, there are queries that
Zapato can prove valid and Cogent reports as invalid (e.g., when overflow is
ignored by Zapato), and vice-versa (e.g., when validity is dependent on pointer
arithmetic or non-linear uses of multiplication). Overall, we found that Cogent
is more than 2x slower than Zapato. On 2000 theorem proving queries Zapato
executed for 208s, whereas Cogent ran for 522s. Therefore, the performance
improvement in Fig. 1 is indicative that, while Cogent is slower, Cogent’s
increased accuracy allows Slam to do less work overall.

During the formalization of the kernel API usage properties that Slam is
used to verify [4], a large set of properties were removed or not actively pursued
due to inaccuracies in Slam’s theorem prover. For this reason the results in Fig. 1
are not fully representative of the improvement in accuracy that Slam/Cogent
can give. In order to further demonstrate this improved accuracy, we developed
and checked several new safety properties that could not be accurately checked
with Slam/Zapato. For more information on this property and a previously
unknown bug that was found see [11].

Experiments with extended static checking We have also integrated Cogent with
Boogie [2], which is an implementation of Detlef et al.’s notion of extended static
checking [1] for the C# programming language. Boogie computes verification
conditions that are checked by an automatic theorem prover.



We have applied Cogent to these verification conditions generated by Boo-
gie and compared the performance to Simplify. The results were effectively the
same. For more information on this application and, in particular, how we handle
the nested quantifiers that appear in the Boogie queries, see [11]. We make [11],
our tool, and bitvector benchmark files available on the web1 in order to allow
other researchers to reproduce our results.

4 Conclusion
Automatic theorem provers are often used by program verification engines. How-
ever, the logics implemented by these theorem provers are not a good fit for the
program verification domain. In this paper, we have presented a new prover
that accurately supports the type of reasoning that program verification engines
require. Cogent’s strategy is to directly encode input queries into proposi-
tional logic. This encoding accurately supports bit operations, structures, unions,
pointers and pointer arithmetic, and pays particular attention to the sometimes
subtle semantics described in the ANSI-C standard. Our evaluation of Cogent
demonstrates that it improves the accuracy of Boogie, and both the perfor-
mance and accuracy of Slam. Additionally, Cogent provides concrete coun-
terexamples in the case of failed proofs. To the best of our knowledge, Cogent
is the only theorem prover that accurately supports pointer arithmetic, unions,
structures and bitvectors and produces concrete counterexamples for a logic
suitable for program verification.

References

1. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI. (2002)

2. Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. JOT 3 (2004) 27–56

3. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Labs (2003)

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: IFM. (2004)

5. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving
for predicate abstraction refinement. In: CAV. (2004)

6. Henzinger, T.A., Jhala, R., Majumdar, R., Qadeer, S.: Thread modular abstraction
refinement. In: CAV, Springer Verlag (2003) 262–274

7. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with mini-
mum predicates. In: CHARME. (2003)

8. Ivers, J., Sharygina, N.: Overview of ComFoRT, a model checking reasoning frame-
work. Technical Report CMU/SEI-2004-TN-018, CMU (2004)

9. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: TACAS. (2005) to appear.

10. Stump, A., Barrett, C., Dill, D.: CVC: a cooperating validity checker. In: CAV
02: International Conference on Computer-Aided Verification. (2002) 87–105

11. Cook, B., Kroening, D., Sharygina, N.: Accurate theorem proving for program
verification. Technical Report 473, ETH Zurich (2005)

12. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software
predicate abstraction. In: TACAS. (2004)

1 http://www.inf.ethz.ch/personal/kroening/cogent/


