INTRODUCTION TO COMPUTER MUSIC

SPECTRAL CENTROID

An estimate of brightness

Roger B. Dannenberg
Professor of Computer Science, Art, and Music

Project 3

- Goal: Use spectral centroid to control FM synthesis parameters

- What’s a spectral centroid?
- Example code
Discrete Fourier Transform

\[R_k = \sum_{i=0}^{N-1} x_i \cos\left(\frac{2\pi ki}{N}\right) \]

\[X_k = -\sum_{i=0}^{N-1} x_i \sin\left(\frac{2\pi ki}{N}\right) \]

How to Interpret a Discrete Spectrum

- These points \(X_k \) and \(R_k \) are evenly (linearly) spaced in frequency.
- Point \(R_{N/2} \) is at \(SR / 2 \).
- Points \(X_k \) and \(R_k \) are at \(\left(\frac{k}{(N/2)}\right) \times \left(\frac{SR}{2}\right) = k \times \frac{SR}{N} \) Hz.
- Frequency spacing (width of “bins”) is \(SR / N \) Hz – the “bin width”
- Example: \(SR=44100 \) Hz, FFT size = 1024 points, bin size = \(44100/1024 = 43.0664 \) Hz
- FFT takes in \(N \) samples and outputs \(N \) values
- This must be because FFT and Inverse FFT preserve information: \(N \)-dimensions in, \(N \)-dimensions out
- The output values are:
 - \(R_0 \) – the “DC” component
 - \(X_0 \) – always zero, not in output
 - \(R_1, R_2, R_3, \ldots, R_{N/2-1}, X_{N/2-1} \)
 - \(R_{N/2} \) – the “Nyquist” component
 - \(X_{N/2} \) – always zero, not in output
- Note there are \(N \) points as expected
Discrete Magnitude (or Amplitude) Spectrum

- Magnitude \(A_k = \sqrt{R_k^2 + X_k^2} \)
- The magnitude spectrum is:
 - \(A_0, A_1, \ldots, A_{N/2} \)
- Note there are \(N/2+1 \) points.
- How can this be? There are only \(N/2-1 \) non-zero phases, so we still have \(N \) total dimensions.

Spectral Centroid

- Weighted average of the magnitude (amplitude) spectrum:
 \[
 \text{spectral centroid} = \frac{\sum_{i=0}^{N} i \cdot w \cdot A_i}{\sum_{i=0}^{N} A_i}
 \]
- \(w \) is the width of each spectral bin in Hz
- \(w = \text{sample rate} / \text{size of the FFT in samples} \)
Spectral Centroid

Time-Varying Spectral Centroid
Review Project 3 Code Examples