SAMPLING THEORY

Representing continuous signals with discrete numbers

Roger B. Dannenberg
Professor of Computer Science, Art, and Music
Carnegie Mellon University

From analog to digital (and back)

010110
010100
011000
011011
000111
100100
011000
000010
101100
111010
000101
111011
011100
000100
Analog to Digital Conversion
Digital to Analog Conversion

Approach

- Intuition
- Frequency Domain (Fourier Transform)
- Sampling Theory
- Practical Results
The World is Analog

Continuous or Discrete?
Discrete Amplitude (Y axis)

Discrete Time (X axis)
Questions

• What **sample rate** should we use? Why does it matter?
• How many **bits per sample** should we use? Why does it matter?
• **Interpolation**: How can we interpolate samples to recover the sampled signal?
• What’s the effect of **rounding** to the nearest integer sample value?
• How do we **convert** analog to/from digital?
Introduction to the Spectrum

Introduction to the Spectrum (2)
Phase

Frequency
Amplitude

$A \cdot \sin(\omega t + \phi)$

Amplitude A
Frequency ω
Phase ϕ
Fourier Transform

- Our goal is to *transform* a function-of-time representation of a signal to a function-of-frequency representation.
- Express the time function as an (infinite) sum of sinusoids.
- Express the infinite sum as a function from frequency to amplitude.
- I.e. for each frequency, what is the amplitude of the sinusoid of that frequency within this infinite sum?

Fourier Transform: Cartesian Coordinates

Real part:

\[R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt \]

Imaginary part:

\[X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin \omega t \, dt \]
What About Phase?

- Remember at each frequency, we said there is one sinusoidal component: \(A \cdot \sin(\omega t + \phi) \)
 - \(A \) is amplitude
 - \(\omega \) is frequency
 - \(\phi \) is phase
- The Fourier analysis computes two amplitudes:
 - \(R(\omega) \) and \(X(\omega) \)
 - Trig identities tell us there is no conflict:
 \[
 A = \sqrt{R^2 + X^2} \quad \phi = \arctan(X / R) \\
 A(\omega) = \sqrt{R^2(\omega) + X^2(\omega)} \quad \phi(\omega) = \arctan(X(\omega) / R(\omega))
 \]

From Cartesian to Complex

- \(R \) is “real” or cosine part
- \(X \) is “imaginary” or sine part
- Use \(F(\omega) = R(\omega) + j \cdot X(\omega) \)
Fourier Transform (Complex Form)

\[R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt \]

\[j \cdot X(\omega) = -j \int_{-\infty}^{\infty} f(t) \sin \omega t \, dt \]

\[F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j \omega t} \, dt \]

Orthogonal Basis Functions

Horizontal and vertical axes are independent or orthogonal in the 2-dimensional plane, sinusoids are orthogonal in the infinite-dimensional space of continuous signals.

Just as every point in the plane is a unique linear combination of the unit E and N vectors, every signal is a unique linear combination of sinusoids.
The Frequency Domain

Graphic Equalizer

Spectral Analyzer

100-200 hz
200-400 hz
400-800 hz
800-1.6k hz
1.6-3.2k hz

Spectrum

The Frequency Domain (2)
The Amplitude Spectrum

Amplitude Spectrum of a “Real” Signal
Representations

• (Real, Imaginary) or (Amplitude, Phase)?
 • Power ~ Amplitude^2
 • We generally cannot hear phase
 • Measure a stationary signal after Δt: Amplitude spectrum is unchanged, but phase changes by Δt · ω

• Given (amplitude, phase)
 • It’s hard to plot both
 • Usually, we ignore the phase

Time vs Frequency

\[F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt \]

• What happens to time when you transform to the frequency domain?
• Note that time is “integrated out”
• NO TIME REMAINS
• The Fourier Transform of a signal is not a function of time !!!!!
• (Later, we’ll look at short-time transforms – e.g. what you see on a time-varying spectral display – which are time varying.)
PERFECT SAMPLING
From continuous signals to discrete samples and back again

Sampling – Time Domain
- What happens when you sample a signal?
- In time domain, multiplication by a pulse train:

\[\text{signal} \times \text{pulse train} = \text{sampled signal} \]
Sampling – Frequency Domain

• What happens when you sample a signal?
• In frequency domain, the spectrum is *copied and shifted* (!)

BEFORE:

AFTER:

An Aside

• Why copied and shifted?
• We’re glossing over some details …
• Multiplication in the time domain is equivalent to convolution in the frequency domain.
• The transform of a pulse train is a pulse train (!)
• Convolution with a pulse train copies and shifts the spectrum.
• See text for more detail.
• Take linear systems for derivation and proof.
Aliasing: Time Domain View

At 16kHz SR, sine tones at:
1000 Hz
3010 Hz
5020 Hz
7030 Hz
9040 Hz
11060 Hz
13070 Hz
15080 Hz

Are there other aliases?

Aliasing: Frequency Domain View

Before Sampling

Amplitude

Frequency
Frequency Domain View (2)

After Sampling

A Signal With Higher Frequency Components

Before Sampling
A Signal With Higher Frequency Components

After Sampling

Bandwidth

What sample rate should we use? Why does it matter?
Bandwidth

The frequency range (bandwidth) is determined by the sample rate!

Sampling Without Aliasing

How do we convert analog to/from digital?
Sampling Without Aliasing

Prefilter removes all frequencies above 1/2 sampling rate (the Nyquist Frequency)

Conversion to Analog

Reconstruction filter removes all frequencies above 1/2 sampling rate (the Nyquist Frequency)
What Does a Sample “Mean”? [Diagram]

What Does a Sample “Mean”? (2)

\[\text{sinc}(x) = \frac{\sin(x)}{x} \]

Note: The time axis (x) is scaled so that the zeros of sinc(x) fall exactly on the times of other samples.
What Does a Sample “Mean”? (3)

Why sinc function?

- An impulse has infinite bandwidth.
- If you perfectly cut the bandwidth down to half the sample rate (the Nyquist frequency), you get a sinc function!
- When you reconstruct the signal, replacing impulses with sinc functions, you get the entire continuous band limited signal.
- Samples uniquely determined by signal, signal uniquely determined by samples.
- Bijective (for Klaus 😊)
- AMAZING.
Interpolation/Reconstruction

How can we interpolate samples to recover the sampled signal?

- Convolve with a sinc function
- In other words, form the superposition of sinc functions shifted by the sample times and scaled by the sample values.
- Requires infinite lookahead and infinite computation!
- But sinc decays as 1/time, so good approximations are expensive but at least possible.
IMPERFECT SAMPLING
What is the impact of errors and rounding?

How to Describe Noise

- Since absolute levels rarely exist, measure RATIO of Signal to Noise.
- Since signal level is variable, measure MAXIMUM Signal to Noise.
- Units: dB = decibel
 10dB = ×10 power
 20dB = ×100 power = ×10 amplitude
 6dB = ×2 amplitude
Quantization Noise

To simplify analysis, assume quantization error is uniformly randomly distributed in [-0.5, +0.5]

Quantization Examples

<table>
<thead>
<tr>
<th>Bit Depth</th>
<th>Sine Tone</th>
<th>Cello</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-bit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What's the effect of rounding to the nearest integer sample value?

- Rounding effects can be approximated by adding white noise (uniform random samples) of maximum amplitude of $\frac{1}{2}$ least significant bit.

$$\text{SNR(dB)} = 6.02M + 1.76$$

(about 6dB/bit)
Noise

How many bits per sample should we use? Why does it matter?

Noise

The signal-to-noise ratio is determined by the bits per sample!
Can Discrete Samples Really Capture a Continuous Signal?

- Band-limited signal \Rightarrow no lost frequencies!
- To the extent you can do perfect sampling \Rightarrow no noise!

Summary

- Theoretical result: discrete samples can capture all information in a band-limited signal!
- Practical result 1: sampling limits bandwidth to 1/2 sampling rate (the Nyquist frequency)
- Practical result 2: sampling adds quantization noise; SNR is about 6dB per bit
- What’s a decibel?
DITHER AND OVERSAMPLING
Additional techniques for practical digital audio

Dither

• Sometimes rounding error is correlated to signal.
• Add analog noise prior to quantization to decorrelate rounding.
• Typically, noise has peak-to-peak amplitude of one quantization step.
Heavily Quantized, Undithered Sinusoid

Sinusoid With Dithering

No dither Dither
Oversampling

- Reconstruction filters are hard to build with analog components
- Idea: digitally reconstruct signal at high sample rate
- Result: simpler to build analog filter
THE FREQUENCY DOMAIN
An alternative to waveforms (the time domain)

The Frequency Domain

• Examples of Simple Spectra
• Fourier Transform vs Short-Term Fourier Transform
• DFT – Discrete Fourier Transform
• FFT – Fast Fourier Transform
• Windowing
Formal Definition

\[R(\omega) = \int_{-\infty}^{\infty} f(t) \cos \omega t \, dt \]
\[X(\omega) = -\int_{-\infty}^{\infty} f(t) \sin \omega t \, dt \]
\[F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} \, dt \]

Simple Spectra Examples

- Sinusoid
- Noise
- Tone with harmonics
More Examples

• Narrow Band Noise

• Impulse

Negative Frequencies

• Recall that FT is defined for negative as well as positive frequencies. What does this mean?

• \(\cos(\omega t) = \cos(-\omega t), \sin(\omega t) = -\sin(-\omega t) \)

• For FT of real signals,
 • Imaginary part has odd symmetry: \(X(\omega) = -X(-\omega) \)
 • The real part has even symmetry: \(R(\omega) = R(-\omega) \)

• Therefore, the negative frequencies contain redundant information. That’s why we’ve mostly ignored them.
Fourier Transform vs Short-Term Transform

- In practice, we can’t do an infinite integral, so do a finite integral: the short term FT (STFT)

\[F(\omega) = \int_{a}^{b} f(t)e^{-j\omega t} \, dt \]

- In general, the interesting properties of true FT hold for STFT, but with annoying artifacts

Discrete Fourier Transform

- Since we work with samples rather than continuous data,
- We need a discrete version of FT: DFT
- DFT is essentially just like FT, except band limited and computable
- I’m glossing over many derivations, proofs, and details here.
Fast Fourier Transform

- Replacing integral with a sum, you would think computing $R(\omega)$ would be an $O(n^2)$ problem

\[F_k = \sum_{n=a}^{b} f_n e^{-j2\pi kn/N} \]

- Interestingly, there is an $O(n \log n)$ algorithm, the Fast Fourier Transform, or FFT

Windowing

- Typically, you can reduce the artifacts of the STFT by windowing:

- Different windows optimize different criteria: Hamming, Hanning, Blackman, etc.
More Examples Using Audacity

AMPLITUDE MODULATION
Synthesis techniques based on signal multiplication
Amplitude Modulation

- Amplitude modulation is simply multiplication (MULT in Nyquist)
- Amplitude modulation (multiplication) in the time domain corresponds to convolution in the spectral domain (!)
- For each sinusoid in the modulator, the modulated signal is shifted up and down by the frequency of the sinusoid.

AM spectra

- Assuming the modulated signal is a sinusoid:

- Otherwise:

 - Carrier: 880Hz
 - Modulation Frequency: 220Hz
Ring Modulation

- Ring Modulation is named after the “ring modulator,” an analog approach to signal multiplication.
- See code_3.htm for AM examples

Constant Offset

- What is the difference between:
 \[\text{lfo}(6) \]
- And
 \[2 + \text{lfo}(6) \]
- ?
Summary

- Dithering sometimes used to avoid quantization artifacts
- Oversampling is standard technique to move (some) filtering to the digital domain
- Amplitude Modulation by a sinusoid shifts the spectrum up and down by the frequency of the modulator