WAVETABLE SYNTHESIS

A basic synthesis technique

Building Waveforms

- This is presented more or less as a “formula”:

```plaintext
define variable *table* =
    sim(0.5 * build-harmonic(1.0, 2048),
        0.25 * build-harmonic(2.0, 2048),
        0.125 * build-harmonic(3.0, 2048),
        0.062 * build-harmonic(4.0, 2048))
set *table* = list(*table*, hz-to-step(1), #t)
```
Using Waveforms

table is a global – if you set it, OSC will use it:
- set *table* = …
- play osc(c4)
Or, set another global and pass it to OSC
- set *mytable* = …
- play osc(c4, 1.0, *mytable*)

Piece-wise Linear Functions: PWL

- Common for control functions.
- By default, produces low, control sample rate.
- \(\text{pwl}(t1, v1, t2, v2, \ldots, tn)\)
Variants of PWL

- \texttt{pwlv(v0, t1, v1, t2, v2, \ldots, tn, vn)}
 - for non-zero starting and ending points

- \texttt{pwe(t1, v1, t2, l2, \ldots, tn)}
 - exponential interpolation, \(v_i > 0 \)

- \texttt{pwlr(i1, v1, i2, v2, \ldots, in)}
 - relative intervals rather than absolute times

- See manual for more variants & combinations

Basic Wavetable Synthesis

- Build a wavetable with the harmonics you want
- Use an oscillator (osc) to generate a tone with these harmonics
- Multiply by an envelope (e.g. pwl) to control the amplitude contour.

- Advantages: simple, efficient, direct control
- Disadvantages: spectrum (strength of harmonics) does not change with pitch or time as in most acoustic instruments.