15-319 / 15-619
Cloud Computing

Recitation 15
April 28st & 30th 2015
Overview

• Last week’s reflection
 – Spark Program
• This week’s schedule
 – Project 4.3
• Demo
Reflection on P4.2

• Implement a search engine in Spark
 • Wikipedia Page Dataset
 • TF-IDF
 • PageRank

• Issues
 • Scala as a new Language
 • Spark cluster management
 • Jobs taking too long to run
Survey!

- Time for you to reflect on the course
- Anonymous survey will be mailed to you
- System keeps track of survey responders
- **2% bonus** to sweeten the deal
- We want to know:
 - Course content, quality, improvements
 - Projects, quality, experience, fun factor, time investment
 - Logistics, course support, improvements
 - How would you improve the course?
- The course relies on feedback for improvement semester to semester!
Project 4

• Project 4.1
 - MapReduce Programming Using YARN

• Project 4.2
 - Iterative Programming Using Apache Spark

• Project 4.3
 - Graph Programming Using GraphLab
Graph Computation

• Some types of data are best expressed using graphs
 • Eg: Social Networks, Transportation Grids…
• There are many computations that can be expressed as graph computations:
 • Eg: PageRank, Traversal, Min Cut/Max Flow etc..
• How about an efficient framework to execute graph-based computation?
Take your pick...
Pregel and Company

- Graph processing framework introduced by Google
- Programs are expressed as operations to be performed on a vertex
- Programs are executed in iterative, bulk-synchronous (lock-step) fashion
Pregel’s Performance

• Synchronous execution can be a performance bottleneck
GraphLab

- Graph processing framework
- Supports both synchronous and asynchronous execution
- Optimized for power-law graphs

Natural Graphs:

Yahoo! Web Graph

Top 1% vertices is adjacent to 53% of the edges!
• Vertex-cut approach added in GraphLab to handle power-law graphs
How to write a GraphLab program?

- Write three functions that execute on every vertex of a graph
 - Gather
 - Apply
 - Scatter
Example Program - PageRank

\[R[i] = 0.15 + \sum_{j \in \text{Nbr}(i)} w_{ji} \times R[j] \]

```plaintext
GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
    total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
    foreach( j in out_neighbors(i))
        signal vertex-program on j
```

Gather Information About Neighborhood
Update Vertex
Signal Neighbors & Modify Edge Data
Project 4.3

• Find relevant topics that connect two terms
 1. Process the wikipedia graph dataset: PageRank
 2. Breadth First Search (BFS) using GraphLab
 3. Visualize the results
Project 4.3 - Overview

- Use the enwiki2013 graph dataset
- Run pagerank to find the popular pages
- Find connections between the pages using BFS
Demo

To launch a GraphLab cluster, do the following steps:

• Launch three m3.large instances with ami-e697958e which has GraphLab installed.
• Upload your key pair file (.pem file) into each instance and create a config file in /home/ubuntu/.ssh/. Add the following lines into this config file:

```
Host *.compute-1.amazonaws.com
  IdentityFile <path of your .pem file such as ~/mykey.pem>
```
Demo cont.

• Log into one instance and create a file called machines in the home directory (/home/ubuntu/)
• Put the DNS of the current instance in the first line of this file, and the DNSs of another two instances in the subsequent lines.
• Now you can launch your GraphLab applications from this instance!
Upcoming Deadlines

● The end is near...
● Course Survey
 ○ Due: 11:59PM ET May 01st (Friday)
● Project 4.3
 ○ Due: 11:59PM ET May 03rd (Sunday)
 ■ 10% bonus if submitted by Friday