Hardware Components

- **Central Processing Unit (CPU)**
 - Program control
 - Arithmetic/logical operations
 - Coordinates data movement between memory and registers (small amount of storage)

- **Memory**
 - Main (RAM): fast, expensive, volatile
 - Secondary (Hard disk, CD, DVD): slow, nonvolatile

- **Input/Output (I/O) Devices**
 - Keyboard, mouse, camera, microphone, …
 - Monitor, speakers, printers, …
Software

• **Algorithm** - A sequence of steps (strategy) to solve a problem (not necessarily computational).

• **Program** - A sequence of instructions and decisions executed by a computer to achieve a task.
 - E.g., web browser, mailer, editor, operating system, compiler, scheduler

• **Programming** helps to explain the approach computer scientists use to solve complex problems.
Digital and Analog

- **Analog** information is continuous
 - e.g., mercury in a thermometer, sound waves, light waves
- **Digital** information is discrete and can be represented by numbers.
 - e.g., music on a CD is made by sampling the sound briefly at a high rate.
- Computers stores information in **binary** numbers, which has only two digits (0, 1)
Why Binary?

- Simple; easy to build, reliable
 - two stable states: (on, off), (high, low), (magnetized, demagnetized),
- Unambiguous signals
 - threshold between high and low voltage
 - unaffected by slight noise
 - as it degrades the two extremes can be reinforced
- Flawless copying
- Can represent anything
Binary Numbers

<table>
<thead>
<tr>
<th>decimal</th>
<th>binary</th>
<th>decimal</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Bits ‘n Bytes ‘n Memory

• A **bit** is a one binary digit. A **byte** is 8 bits.

• Main memory is a long list of bytes.
 • A byte is just large enough to hold a single keyboard character
 • Each byte in memory is conceptually numbered
 • The number is called its **address**.

• Terms for the size of memory are
 • Kilobyte (**KB**) is $2^{10} = 1024$ bytes
 • Megabyte (**MB**) is 2^{20} (approx. million) bytes
 • Gigabyte (**GB**) is 2^{30} (approx. billion) bytes
Machine Instructions

• Each type of computer processor has a set of **machine operations** it can perform. Each operation does one very simple thing.
 • **e.g.**, get a value from memory and put it in a register, add the values in two registers, test if the value in a register is zero, jump to some instruction ...

• A **machine instruction** consists of several bytes of memory that tell what machine operation to perform and, if needed, what data to use.
Program Execution

• To **execute** (run) a program the operating system does the following:
 • loads the program instructions from the hard drive into memory;
 • finds some memory for the program to use;
 • tells the CPU at what address the first instruction is;
• Then the CPU fetches one instruction at a time from memory into the CPU and carries out the operation.
Programming Language Types

• **Machine** - Uses only operations that the specific hardware can execute directly (e.g., `1101 0000 0000 0111`)

• **Assembly** - Uses *mnemonics* to represent operations or data values (e.g., `add %o0 %o1 %o0`)

• **High-level** - Supports structured programming and use English-like phrases (e.g., C++, C, Java, Python, Lisp) (e.g., `x = 1 + 2;`)

• **Fourth-generation** - Describes *what* needs to be done, not *how* to do it. (e.g., SQL, SAS, Mathematica) (e.g., `SELECT * FROM books WHERE price < 10.0`
Program Translation

- **Compiler** - program that translates code (a program) in the source language, all at once, into another language call the *object* or *target* language.
 - E.g., translates Java to machine instructions.
 - The code is translated only once and executed many times.
- **Interpreter** - program that translates and then executes only one (or several) statement(s) at a time.
 - This translation needs to be done each time a statement is executed.
Traditional Compilation

Different hardware/operating systems need slight variants of the program and separate compilers.
Java Translation

Java compiles to a single “virtual” machine.

Source code

Compile

Java bytecode

JVM

JVM

JVM

JVM

Windows
Intel

Unix
HP

Unix
Sun

Mac OS X
iMac

JVM - Java Virtual Machine
Programming Languages

- **Syntax** – Rules of the programming language to form valid statements (punctuation, statement structure, order of operations,...).

- **Semantics** – The meaning of the statements. That is, what will happen when the computer executes statements.
Types of Programming Errors

- **Compile-time error** - Syntax errors found by the compiler or syntax-aware editors.
 - e.g., $x - * y =$

- **Run-time error** - Error causes program to stop abnormally; often called an exception.
 - e.g., $x = y / z$ (What if z is zero?)

- **Logical error** - Program produces incorrect results without complaint.
 - e.g., Sort program does not always sort the data
Goals of the Course

• Understand basic programming concepts.
• Translate an algorithm specification into correct program code.
• Write programs to solve simple problems.
 • Writing correct programs requires “debugging” your programs: Find and correct errors that causes your program not to do what you intend.
What is a computer system?

• **Hardware** is the electronic and mechanical parts. It is the tangible, physical device.
 - But a computer must be programmed to be useful (other than as a doorstop or sculpture).

• **Software** is the sets of instructions and data necessary to solve problems. It is intangible, conceptual.