Outline for this week

• HW5 due today via Box (3 of you already did)
• Quiz 6 tomorrow in recitation, will cover up to Thursday's lecture (Interfaces, Iterators, Stacks/Qs)
• Next HW out Thursday, due April 9
• Searching & Sorting, Tree intro
Searching (linear/sequential search)

• How did we implement contains?
 – start at first element, go until you find it (or not)

• Analysis?
 • Worst case $O(n)$ - item in last position/not found
 • So, if my search space doubles in size, I need to look at twice as many elements in the worst case

• Can we do better?
 – yes, but…
Searching (binary search)

• Start at middle element, determine whether you're smaller/bigger and search the left/right half

• Analysis?
 • Worst case - each stage cuts the search space in half. How many times can we halve a space of size n? \(O(\log n) \)
 • So, if my search space doubles in size, I need only look at one additional element!

• But (there's always a but)…
 – the collection needs to be in order (and there’s a cost)!
 – AND must have constant-time access to each element
Timing (Searches)

• Why do we use O notation (Big O)?
 – Because we need a machine/OS-independent way of measuring algorithm performance
 – **BUT**, if you’re running on your machine, you can do absolute timings, no?
 – Of course, different machines will have different timings, but on your machine, it should be consistent

• So let's time some searches…
Sorting

• In order to sort, you need to be able to compare elements (a total order):
 – total: $a R b$ or $b R a$,
 – transitive: $a R b$ and $b R c \implies a R c$
 – anti-symmetric: $a R b$ and $b R a \implies a == b$

• Types
 – ints, doubles: easy
 – Objects? must be Comparable

• So, how do you sort?
Sorting (Bubble sort)

• Bubble Sort = = BS
• Algorithm/Illustrate
 – Start at the first element and pair-wise compare adjacent elements; if they are out of order, swap them
 – Repeat this until you go through all the elements and don't make a swap
 – *Invariant:* After the i^{th} pass, the i^{th} largest elements are in their final position (a "sinking" sort)
• Analysis?
 – Worst case, does $n-1$ compares (AND swaps), then $n-2$, then $n-3$…
 – $O(n^2)$ comparisons AND $O(n^2)$ swaps --> not good!
Sorting (Insertion sort)

- Algorithm/Illustrate (like sorting a hand of cards)
 - In each iteration, i, take the element in the ith position, compare it to the one before until you find the place where it belongs (while it's less than the one ahead of it, move the one ahead down, making a hole; not really “swapping”)
 - \textit{Invariant}: After the ith pass, the first i elements are sorted relative to each other

- Analysis?
 - O(n) to go through all the elements
 - O(n) worst case (which is?) to find the place to insert element
 - O(n) * O(n) --> O(n2) comp’s, but in practice often pretty fast
Sorting (Selection sort)

- Algorithm/Illustrate
 - In each iteration, i, select the ith smallest element and store it in the ith position
 - \textit{Invariant}: After the ith pass, the ith smallest elements are in their final position

- Analysis?
 - O(n) to find the smallest element in n objects
 - Must go through n-1 positions of the collection: O(n)
 - O(n) * O(n) --> O(n^2) comparisons

- Can we do better than O(n^2)?
Sub-Quadratic Sorts

• Mergesort
• Quicksort
• Radix sort
Sorting (Merge sort)

- Algorithm/Illustrate (w/numbers)
 - Divide the collection in half
 - Recursively sort the two halves (by calling mergesort)
 - Merge the halves back together
 - *Invariant*: the merged “halves” are sorted
Sorting (Merge sort)

• Analysis?
 – $O(\log n)$ - the number of times you can divide in half
 – $O(n)$ - the time to merge two halves into a whole
 – $O(\log n) \times O(n) \rightarrow O(n \log n)$
 – BUT (see previous note about "but"), this algorithm needs a separate, auxiliary, array to store the halves
Sorting (Quicksort)

- **Algorithm/Illustrate (w/numbers)**
 - "Randomly" pick an element about which to partition the collection into two parts
 - Partition the array around that value, called the pivot, so that the partition value ends up in final position, i.e., the array looks like: < pivot, pivot, >= pivot
 - Recursively sort the two parts (by calling quicksort)
 - **Invariant**: After the i^{th} pass, the i^{th} partition value/pivot is in its final position (i.e., all values to the left are less than the partition value/pivot and all the values to the right are greater than or equal to the partition value/pivot)
Sortng (Quicksort)

- Analysis? Well…
 - $O(n \log n)$ if all goes well in choosing the pivot - which is when what is true about where the pivot ends up?
 - BUT, $O(n^2)$ in worst case - when might that be?
 - In practice, though, usually $O(n \log n)$ and faster (better constant) than merge sort (and no need for auxiliary array)
Sorting (can we do better than $n \log n$?)

- **Bucket sort**
 - Algorithm - need a bucket for each possible value
 - Analysis
 - if $O(1)$ to insert an element into a bucket --> $O(n)$ to insert all elements
 - if $O(m)$ to collect all the buckets --> $O(n + m)$ overall
 - Limitation: finite number of possible values (finite buckets)

- **Radix sort for integers**
 - 10 buckets (0 - 9); sort integers into appropriate bucket starting with least significant digit (int % 10), collect them and sort by next least significant digit until out of digits
 - $O(n \times k \times 10)$ where k is number of digits --> $O(n)$ overall
Sorting (Stable sorts)

- Definition
 - A stable sort maintains the relative position of equal elements
 - Benefit? If you were sorting students and sorted by name and then by gender, then you’d get a list that was sorted by gender, but alphabetical within gender

- Which sorts preserve stability?
 - Insertion sort
 - Merge sort

- And the others
 - Selection sort - no (why?)
 - Quicksort – no, for similar reason as selection sort
Sorting (summary)

<table>
<thead>
<tr>
<th>Sort</th>
<th>Best case</th>
<th>Average</th>
<th>Worst case</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quicksort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sorting (summary)

<table>
<thead>
<tr>
<th>Sort</th>
<th>Best case</th>
<th>Average</th>
<th>Worst case</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>no</td>
</tr>
<tr>
<td>Insertion</td>
<td>O(n)</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>yes</td>
</tr>
<tr>
<td>Merge</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>yes</td>
</tr>
<tr>
<td>Quicksort</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>O(n²)</td>
<td>no</td>
</tr>
</tbody>
</table>