
Navigation in Three-Dimensional Cluttered Environments
for Mobile Manipulation

Armin Hornung Mike Phillips E. Gil Jones Maren Bennewitz Maxim Likhachev Sachin Chitta

Abstract— Collision-free navigation in cluttered environ-
ments is essential for any mobile manipulation system. Tra-
ditional navigation systems have relied on a 2D grid map pro-
jected from a 3D representation for efficiency. This approach,
however, prevents navigation close to objects in situations where
projected 3D configurations are in collision within the 2D grid
map even if actually no collision occurs in the 3D environment.
Accordingly, when using such a 2D representation for planning
paths of a mobile manipulation robot, the number of planning
problems which can be solved is limited and suboptimal robot
paths may result. We present a fast, integrated approach
to solve path planning in 3D using a combination of an
efficient octree-based representation of the 3D world and an
anytime search-based motion planner. Our approach utilizes
a combination of multi-layered 2D and 3D representations to
improve planning speed, allowing the generation of almost real-
time plans with bounded sub-optimality. We present extensive
experimental results with the two-armed mobile manipulation
robot PR2 carrying large objects in a highly cluttered environ-
ment. Using our approach, the robot is able to efficiently plan
and execute trajectories while transporting objects, thereby
often moving through demanding, narrow passageways.

I. INTRODUCTION

Home assistance is a major future area of interest for
personal robots. Navigation in the highly unstructured and
dynamic environments of a home is thereby the prerequisite
to fulfill any high-level tasks. Current state of the art navi-
gation approaches enable fast planning and robust execution
for a 3-DoF robot base in a 2D grid map indoors [1]. In
these approaches, sensor data is either two-dimensional or
projected down to 2D from 3D and a projected footprint
is typically used to plan for the robot on a 2D grid map.
However, these approaches are usually not able to generate
motions to goal locations in highly cluttered areas or to goal
locations where the 2D projection of the robot is in collision
in the 2D map – even if the 3D configuration of the robot
is actually collision-free in the 3D world. As an example,
Fig. 1 shows the PR2 attempting to pick up and move a
laundry basket off a table. It can only achieve this task by
moving its base underneath the table with its arms over the
table. Such a configuration is unachievable using traditional
navigation planning techniques. Additionally, no path for the
PR2 carrying the laundry basket might be found for narrow
passages when planning motions in a 2D map. This is due

A. Hornung and M. Bennewitz are with the Humanoid Robots Lab,
University of Freiburg, Germany. M. Phillips and M. Likhachev are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA. S. Chitta
and E.G. Jones are with Willow Garage Inc., Menlo Park, USA.

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8, by the European Commission
under grant agreement numbers FP7-248258-First-MM, and by Willow
Garage Inc.

Fig. 1. Left: A mobile manipulation robot often has to approach obstacles
closely when traversing narrow passages or picking up large objects. Right:
To allow for efficient collision checks while considering the 3D structure
of the environment and the robot, we use a multi-layered representation for
the robot. Here, it consists of projected layers for the base (green), spine
(red), and arms (blue) in addition to a full 3D collision map.

to the enlarged footprint in the 2D map needed to account
for the basket and the extended arms.

Full 3D collision checking is a possible solution in such
situations. In typical indoor environments with a multi-DoF
robot, however, this is expensive and will lead to long
planning times. Collision checking could be sped up using a
coarser representation of the environment. However, the lack
of high-resolution information can prevent the robot from
reaching goals in clutter.

To overcome these limitations, we propose an integrated
navigation framework that utilizes a combination of full 3D
collision checking with a multi-layered 2D representation of
both the robot and the environment (Fig. 1). Our approach
starts with the robot incrementally building a 3D occupancy
map in an efficient octree-based representation. This 3D
map is then projected down into a multi-layered 2D rep-
resentation. Based on the current configuration of the robot
and any object it might be holding, corresponding projected
footprints for the different layers are automatically computed.
The advantage of this method is that expensive, 3D collision
checks during planning can be avoided, when no collision is
found in any layer. We apply a global planner to generate
paths on a lattice graph based on the layered representation
in an anytime manner. A local planner then executes this
path and validates it during execution.

Our novel contributions are multi-fold. First, we present a
system that is capable of efficient realtime 3D planning and
navigation. Our approach is particularly suitable for mobile



manipulation tasks, e.g., tasks where a robot needs to carry
large objects in cluttered environments. Another important
contribution is the integration of an efficient 3D representa-
tion for large-scale indoor environments with fast realtime
motion planning, implemented and validated on a real robot
operating with noisy sensor data in a cluttered environment.
Our approach provides the first implementation of efficient
navigation planning for mobile manipulation systems of
different shapes in arbitrary configurations.

We validate our approach through real-world experiments
on the PR2 mobile manipulation robot. Using our approach,
the PR2 is able to carry large objects in a cluttered indoor en-
vironment. It is able to navigate collision-free and efficiently,
transporting objects to parts of the workspace unreachable
with traditional 2D navigation planning approaches. Our
framework builds upon and extends the capabilities of the
Search-based Planning Library (SBPL, [2]) and is available
as open source software1.

II. RELATED WORK

Navigation in cluttered environments is a well-studied
problem for mobile robots [1], [3], [4], [5]. Most approaches
to this problem, however, have focused on navigation for a
2D projected footprint of the robot moving in a projected 2D
representation of the world. Therefore, they are unsuited for
our motivating problem of mobile manipulation in a cluttered
environment since they will reject any configuration of the
robot where the 2D projected footprint of the robot is in
collision with the 2D environment representation.

Hornung and Bennewitz [6] recently proposed an approach
for efficient humanoid robot navigation by combining coarse
2D path planning in open spaces and detailed footstep
planning in the vicinity of obstacles. This technique allows
for finding solutions where planning based on a 2D grid fails.

Lazy collision checks and an enlarged robot model were
used for fast RRT-based motion planning in a simulated
kitchen environment by Vahrenkamp et al. [7]. The authors
concentrated on manipulation tasks in a small part of the
environment. They later extended the approach to coarse
motion planning for the base while further away with an
increased planner granularity closer to the goal [8]. How-
ever, their approach does not cover long navigation plans
through a cluttered environment. Also, randomized planning
approaches generally generate non-optimal solutions and rely
heavily on smoothing to shorten the final path.

Marder-Eppstein et al. [1] use a compact 3D representation
of the environment for a long running navigation demonstra-
tion. This representation allowed for quick updates for dy-
namic obstacles but still restricted the system to operate only
in a projected 2D environment representation. Cart pushing
with a mobile manipulation system was demonstrated by
Scholz et al. [9] but navigation was again limited to goals
where the 2D projection of the cart and the robot was not
in collision. This disallowed, for example, actions that could
move and store the cart under a table.

1As part of the Robot Operating System (ROS) at
http://www.ros.org/wiki/3d_navigation

For efficient collision checking in 3D, several hierarchical
approaches have been proposed in the past such as oriented
bounding box trees [10] or sphere tree hierarchies [11], [12].
They all rely on a spatial subdivision of the 3D space. In
contrast to these approaches, our collision checks are first
performed in a multi-layered 2D map and we employ full
3D collision checks only when required.

Lau et al. [13] recently introduced techniques for incre-
mental updates of collision maps in a non-circular robot’s
configuration space. After convolving a map with the dis-
cretized shape of the robot in a pre-computation step, colli-
sion checks correspond to a single lookup. While the map can
be efficiently updated for dynamic environments, any change
in the robot’s kinematic configuration (e.g. after picking up
objects) requires a full recomputation.

III. THE PR2 ROBOT PLATFORM

We implemented our system on the PR2, which is a mobile
manipulation system equipped with an omnidirectional base,
an articulated sensor head and two 7-DoF arms. The sensors
used throughout this work are the Hokuyo UTM-30LX 2D
laser range finder in the base for localization and the stereo
sensor in the head. The stereo cameras are augmented by
a texture projector to provide dense data [14]. Calibrated
joint encoders provide accurate proprioceptive data about
the robot’s kinematic configuration. The stereo sensor serves
as the main sensing input for detecting obstacles in the
environment for our approach.

The PR2’s dense stereo pair has a narrow field of view
of 55◦. To make that practical for navigation, we imple-
mented an active sensing behavior where the robot’s sensor
head always points in the current driving direction (which
may be to the side or even backwards).

The sensing pipeline for our approach builds on existing
components developed for a tabletop manipulation applica-
tion [15]. The dense depth measurements of the PR2’s stereo
head are first run through a self filter. Based on the known
robot mesh model and proprioception, points on the robot’s
body or on objects that are being manipulated or carried
are removed. Accurate time synchronization between stereo
and proprioceptive data on the PR2 ensures an effective self
filtering. A shadow filter then removes all errors inherent
to stereo sensing: points that are occluded from one of the
stereo pair’s cameras and veiling points on sharp edges and
corners of the joints. Finally, a RANSAC-based ground-plane
detection labels the remaining points as either ground or not
ground for insertion into the octree-based 3D occupancy map
described in detail next.

IV. ENVIRONMENT REPRESENTATION

Mobile manipulation requires the ability to represent and
process a fairly large environment efficiently and accurately.
The representation must be compact and easy to incremen-
tally update to account for dynamic obstacles and changing
scenes.



(a) (b)

(c) (d)

Fig. 2. The projected 2D grid map and footprint (red polygon) for each
layer of the PR2 robot: base (a), spine (b), and arms (c). The full 3D
occupancy grid from the octree representation is shown in (d).

A. Octree-based 3D Occupancy Map

For collision checks between the robot and the environ-
ment, a full 3D representation is required. However, full 3D
occupancy grids pose challenges on computational memory
requirements if a high resolution is used for accurate results.
Thus, we use the octree-based volumetric representation
OctoMap [16] to efficiently build and store a probabilistic
3D occupancy grid at a resolution of 2.5 cm.

B. Continuous Map Updates

For incrementally mapping the environment, the robot
constantly inserts the most recent sensor information into
the 3D map. The point clouds output from the perception
pipeline are self-filtered as described in Sec. III, with points
belonging to the ground plane marked. The map update is
done using raycasting from the sensor origin. Knowledge
about the ground points is hereby needed in order to clear
the corresponding area and thus mark it as traversable.

We apply a probabilistic map update [16] to ensure the
proper handling of sensor noise and dynamic updates when
obstacles are appearing or disappearing (e.g., manipulated
objects, or people moving in the environment).

The robot starts by building an initial 3D map of the
environment that serves as a base representation which can
then be modified by the incremental updates based on the
robot’s sensor data as it is executing its task. The resultant
3D map is the input to the motion planning framework,
which further processes the map to create a multi-layered
representation of the environment for improved efficiency in
motion planning. We will now describe this process in further
detail.

C. Multi-Layered 2D Obstacle Maps

The geometric structure of a mobile manipulation robot
such as the PR2 can be exploited for efficient collision
checking by a spatial subdivision into multiple 3D volumes.
Such a subdivision is especially applicable when the robot

Fig. 3. Left: A snapshot of the PR2 with its arms over a table clearly
indicates that the robot is not in collision with the table. Right: However,
the footprint (red polygon) which is the convex hull of the 2D projection
of the robot’s configuration on the ground is in collision when using a
single-layered grid map only.

is navigating while carrying an object since its geometric
structure will stay mostly constant during such a task. As
illustrated in Fig. 1, the PR2 robot can be subdivided in such
a manner into three parts: base, spine with head, and arms
with possibly attached objects. Additionally, we also repre-
sent the environment in a compact manner using a multi-
layered 2D representation. Each layer of this representation
contains projected representations of the obstacles that can
collide with the body parts associated with that layer. Thus,
we represent the environment for the PR2 in three layers,
each associated with one of the body parts mentioned above.

Each incremental 3D map update also updates these down-
projected 2D maps. The 2D projections are updated for a
given map cell (x, y) in layer lj by traversing all discrete
levels zi in a range corresponding to the layer’s minimum
and and maximum height. For instance, for the layer used
for the robot’s arms, the height range is determined by
the highest and lowest points on the arms and potentially
attached objects. If for all zi in lj , (x, y, zi) is free in the 3D
map, (x, y) is marked as free. As soon as one (x, y, zi) is
occupied, (x, y) is considered to be occupied. Otherwise,
(x, y) is marked as unknown space. Occupied cells in a
2D map layer hence stand for possible obstacles in 3D.
Accordingly, a free cell guarantees that there is no collision
in the 3D space corresponding to that layer.

In addition to the projected 2D map, we also have a
down-projected footprint of the robot corresponding to the
layer. Every time a plan is requested, we first update the 2D
footprint for each layer by down-projecting the convex hull
of the meshes for the body parts belonging to this layer (see
Fig. 2).

The PR2 robot can be decomposed into the following
layers (see Fig. 1): The box-like base, the spine from base
through the head, and the arms with attached objects to
be carried or manipulated. While the base and spine layers
remain fixed for this robot, the arm layer may change its
height and footprint as the arms move. Figure 2 shows an
example of the three layers as projected grid maps with
footprints. This representation was generated from a real
scenario with the PR2 robot as shown in Fig. 2(d). It is
clear that the arm layer has very few obstacles compared to
the spine layer since the arms are at a greater height than
most of the obstacles in the environment (e.g., the chairs and



the table). Using multiple 2D layers in this manner allows
motion planners to avoid expensive 3D collision checking.

An example is illustrated in Fig. 3 where the robot has its
arms over a table and the base under a table. When using
one single 2D map with a 2D projected footprint, the down-
projected table will collide with the down-projected arms and
base. A full 3D collision check would be needed to confirm
whether a collision is actually occurring. With our approach,
however, the table is only projected on the spine layer (which
it doesn’t collide with) and the arm and base footprints are
not compared against it. Since none of the footprints are in
collision, an expensive full 3D check is not needed.

Hence, using multiple layers allows us to declare the
robot configuration collision-free more often without using
expensive 3D collision checking. But we may also be able
to determine that the robot is definitely in a 3D collision
without having to do an explicit 3D collision check. This is
explained in the following.

Some layers have the property that for each (x, y) cell in
the corresponding footprint and each zi in the layer, (x, y, zi)
is part of the robot. This applies, e.g., to the box-like base of
the PR2 and the tall spine. In these cases, if a 2D projection
of an obstacle is inside the robot’s footprint at the appropriate
layer, the robot is definitely in collision with the object in
3D, regardless of the z coordinate and a 3D check is not
needed.

However, for certain layers such as the arm layer, this
property cannot be used because they are not box-like
and often change their shape. In some cases, we can still
eliminate 3D checks by introducing the concept of a tall
obstacle. A map cell (x, y) is marked as a tall obstacle if all
(x, y, zi) cells within the layer are occupied. Now, when the
2D footprint for that layer is in collision with this cell, the
3D configuration will always be in collision and a full 3D
collision check is not needed.

Note that we apply our multi-layered 2D obstacle map
for ruling out full 3D collision checks, not to replace them
completely. In order to preserve the full flexibility of an arbi-
trary robot configuration, it may be still necessary to test its
kinematic configuration for 3D collisions. Full 3D collision
checking, when necessary, is performed using a collision
model representation in the ODE simulation package [17].

V. PLANNING & NAVIGATION FRAMEWORK

The 3D map and the multi-layered 2D obstacle maps serve
as input to our planning and navigation framework. We apply
a global planner to construct a plan in the position and
planar orientation space (x, y, θ) to reach the goal. This plan
is then executed by a local planner. To localize the robot
during navigation, we currently rely on 2D Monte Carlo
localization based on laser data. This localization uses a
static map, which contains walls and other static parts of
the environment, combined with odometry information from
the wheels and an IMU located on the robot.

A. Global Planning
1) Search-based Planning on Lattice Graphs: The global

planner operates on a lattice graph [18], [19] corresponding

0.2m

Fig. 4. Omni-directional motion primitives for the PR2.

to the 2D space with orientations (x, y, θ). Each state is
connected to neighbors resulting from applying a set of mo-
tions primitives. Motion primitives are short, kinematically
feasible motion sequences and the path found by the planner
is a concatenation of these motions. The advantage of this
state space representation is that the resulting plans tend to
be smooth paths that can handle non-holonomic constraints
and non-circular robot footprints. Fig. 4 shows the set of
motion primitives we use for the PR2, including sideways
and backwards motions in addition to driving forward and
turning.

For efficient 2D collision checking, we compute a se-
quence of footprint collision cells for each motion primi-
tive by rolling out the projected robot footprint along the
primitive’s path. This step took approximately 3 seconds in
our trials and is only necessary if the robot configuration
changes. For known configurations, it can be precomputed.

On the lattice graph, we then employ the Anytime Re-
pairing A* (ARA*) search [20]. ARA* runs a series of
weighted A* searches that inflate the heuristic component
by ε ≥ 1 while efficiently reusing previous information. The
search starts out with a large ε, causing it to find a non-
optimal initial solution quickly. Then, as time allows, the
search reruns with incrementally lower values for ε while
reusing much of the information from previous iterations.
Given enough time, ARA* finally searches with ε = 1,
producing an optimal path. If the planner runs out of time
before, the cost of the best solution found is guaranteed to
be no worse than ε times the optimal solution cost. This
allows ARA* to find some solution faster than regular A*,
and approach optimality as time allows.

ARA* checks the states generated at every step in the
planning process for collisions using the multi-layered 2D
map representation presented above. A 3D collision check
is performed only when a possible collision is indicated
in 2D. During the ARA* search, the costs for applying a
motion primitive correspond to the length of the trajectory
and additionally depend on the proximity to obstacles.

The heuristic for the planner uses a 2D Dijkstra search
from the goal state. This heuristic only searches over the 2D
grid map of the base layer with obstacles inflated by the base
inner circle. Since we only search the base layer where 2D
collisions imply 3D collisions, the heuristic stays admissible
and consistent.

B. Plan Execution

During execution, the concatenated discrete motion primi-
tives from the global planner have to be converted into motor
commands for the robot’s base. Additionally, the validity



0 100 200 300
0

20

40

60

80

100

Time [s]

Pr
ob

le
m

s
so

lv
ed

[%
]

First solution (ε = 10)

Multi-layer 3D
Single-layer 3D
Single-layer 2D

0 100 200 300
0

20

40

60

80

100

Time [s]

Optimal solution (ε = 1)

Fig. 5. Success rate for 60 planning problems in cluttered space. The
percentage of solved problems after a certain time is shown for the first
solution (left) and for the final, optimal solution (right).

chairs

Fig. 6. The planning environment with six robot configurations chosen as
start and goal poses. A narrow passage is formed by a table and two chairs,
which were removed to create a second, easier scenario.

of the plan has to be checked while it is being executed
because obstacle positions might change. To do so, the local
planner computes the omnidirectional velocities required to
reach the next (x, y, θ) pose along the path and performs a
single trajectory rollout which is checked for collisions in
the updated obstacle map. As in the global planner, collision
checks are first performed in 2D, and only in 3D when
required.

In case collisions are predicted, the local planner first tries
to scale down the velocity command to reach the target pose
as close as possible. For example, when docking with a table,
a full discrete forward motion might collide with the table
while a shorter, slow approaching motion reaches the table
more closely.

In case the environment has changed or the robot has
drifted from its path, the robot stops and the global planner
is invoked again to find a new path around the obstacle.

VI. EXPERIMENTS

We carried out extensive experiments to evaluate our
approach and demonstrate its usability for realtime mobile
manipulation tasks.

A. Offline Motion Planning Tests

The first set of experiments was designed to show the
superior performance of our approach compared to conven-
tional techniques. We generated multiple planning problems

in which the robot was posed in a configuration with ex-
tended arms for manipulation. This configuration requires
to use a large 2D projected footprint for traditional motion
planning.

We evaluated the following three different approaches:
1) Single-layer 2D: A traditional navigation approach

using only one 2D projected footprint of the robot and
a 2D projected environment map.

2) Single-layer 3D: A navigation approach where 3D col-
lision checks are always performed when the (single)
2D footprint is in collision with the 2D projected map.

3) Multi-layer 3D: Our approach using a multi-layered
2D occupancy grid and performing 3D collision checks
only when absolutely necessary.

We performed experiments in two different scenarios.
The first scenario is shown in Fig. 6. It includes a narrow
passageway between two chairs and a table that the robot
could only negotiate by moving sideways with its base under
the table. For the second scenario the chairs were removed to
make the planning problem easier. Note that the environment
is a real cluttered office space and all the sensor data used
for generating the environment representation came from a
real PR2 robot.

Six different states (Fig. 6) were chosen manually and
planning was carried out between each combination of start
and goal from these states. This results in a total of 60
different planning problems across both scenarios. Planning
was started with ε = 10 and allowed to continue until either
ε = 1 or 5 minutes had passed. The success rate for each
planning approach is shown in Fig. 5. Note that only two of
the configurations in Fig. 6 have 2D footprints that are not in
collision, enabling the traditional Single-layer 2D approach
to succeed in only four cases.

Our approach (Multi-layer 3D) always succeeded in gen-
erating a motion plan, even in the most cluttered scenarios.
It was able to perform far better than the Single-layer 3D
approach and found far more solutions both in a short real-
time window and in the long run (see Fig 5). For our
approach, a first solution was always found within at most
7.3 s. Table I compares our approach and Single-layer 3D
in the 32 planning attempts where both succeeded. Data
from Single-layer 2D is omitted since it is only able to plan
between two configurations. The results make it clear that
using a multi-layered representation seriously improves the
performance of the motion planner allowing it to find an
initial solution very quickly. The refinement of the solution
to a fully optimal solution (ε = 1.0) takes much more time
but in practice the sub-optimal solutions already lead to an
efficient navigation behavior of the robot. Table II shows data
aggregated from the much harder 28 planning attempts for
which only our approach (Multi-layer 3D) succeeded.

In Table I and II, the number of 2D and 3D collision
checks refers to the number of motion primitives that had to
be checked. A motion primitive may have several interme-
diate positions in addition to the start and end state. Each
of our primitives may require up to 10 collision checks for
individual robot positions. The actual number of collision



TABLE I
MEAN AND STANDARD DEVIATION FOR THE 32 PLANNING ATTEMPTS

ON WHICH BOTH 3D APPROACHES SUCCEEDED.

Single-layer 3D Multi-layer 3D

Time to first solution [s] 130.81 0.03
Standard deviation 143.67 0.06

Expands to first solution 13 910.91 1 400.75
Standard deviation 16 572.31 1 618.08

ε after 5 s 1.5 1.00
2D collision checks (primitives) 153 375.06 15 408.25
3D collision checks (primitives) 22 017.09 0.00

TABLE II
MEAN AND STANDARD DEVIATION FOR OUR APPROACH IN THE 28

PLANNING ATTEMPTS ON WHICH ONLY MULTI-LAYER 3D SUCCEEDED.

Time to first solution [s] 1.52
Standard deviation 2.13

Expands to first solution 69 915.39
Standard deviation 107 906.74

ε after 5 s 6.28
2D collision checks (primitives) 769 069.32
3D collision checks (primitives) 2.89

checks for each motion primitive may be less since we abort
as soon as one intermediate position is in collision.

The number of motion primitives that checked for 3D
collisions with our approach is very small because having
multiple layers allows the inflation (which penalizes the cost
function for the robot as it gets closer to obstacles) to be
more informative in keeping the search away from obstacles
and 3D collision checks. Additionally, as can be seen from
Fig. 2, there are very few obstacles in the arm layer of the
robot that are not classified as tall obstacles. However, as the
planner approaches ε = 1.0, even our approach eventually
has to do more 3D collision checks. This is why, on average,
we only reach ε = 6.28 in 5 s in some of the harder cases
and in many of the cases 10 or 100 thousands of collision
checks are required before we reach the optimal solution.

B. Docking Maneuvers With Real Robot

A second set of experiments involved repeated docking
and undocking with a table using the real PR2 robot in
a similar cluttered office environment. This is the kind of
action that a robot will have to execute when it needs to
pickup or place objects on the middle of the table. Note that
configurations that require the robot to reach the middle of
the table are unachievable using traditional 2D navigation
approaches. We evaluated this set of experiments solely
for our approach to motion planning with a multi-layered
representation.

A typical docking maneuver to pick up a large object from
a table can be seen in Fig. 7. In our experiments, all goal
configurations were reached collision-free while the robot
docked and undocked a table 12 times.

C. Navigation While Carrying Large Objects

Finally, we evaluate our approach on a set of experiments
for a difficult scenario involving autonomous navigation
within an extremely cluttered environment while carrying a

goal

Fig. 7. Docking with a table to pick up a large object. Left: Goal
configuration (shaded green) and resulting plans (blue). Right: Execution
of the plan by the PR2.

laundry basket with both arms. In this scenario, the robot
often had to pass through narrow areas, forcing it to move
sideways close to obstacles. The location of the laundry
basket was provided a priori to the robot. The robot first
planned a path to a goal in front of the basket. It then
lifted up the basket with a pre-defined motion of the arms.
A bounding cylinder was used to filter out the basket from
the robot’s sensor data. The final navigation goal for the
robot was then near another table where it would have to put
the basket down again. We conducted multiple trials using
several combinations from a set of six goal and start states.
The robot successfully executed each task.

Fig. 8 shows a series of snapshots while executing this
task, whereas the complete planned path is shown in Fig. 9.
The precomputation time for the footprints was 3.46 s in this
scenario and the complete planning time 3.16 s. We planned
to the first solution in this case (ε = 10). To pick up the
laundry basket, the robot initially had to move its base under
the table. Afterwards, the narrow passage with chairs forced
it to move sideways under the table with the basket over the
table. Finally, the PR2 approached the second table to put
the basket down. Note that large parts of the workspace in
this scenario are unreachable by the robot using traditional
2D navigation planning approaches.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for efficient navigation
with a mobile manipulation robot in three-dimensional, clut-
tered environments such as offices or homes. Our integrated
approach combines an efficient octree-based 3D represen-
tation and an anytime search-based motion planner. For
efficient collision checking during planning, our approach
utilizes a multi-layered 2D environment representation, al-
lowing the generation of almost real time bounded sub-
optimal plans.

We demonstrated the performance of our framework on
the PR2 mobile manipulation robot in exhaustive real-world
experiments. The robot was able to navigate efficiently and



1. 2.

3. 4.

5. 6.

Fig. 8. Sequence of snapshots showing the PR2 robot navigating au-
tonomously with a laundry basket in a cluttered environment. A video of
this sequence is available online.

collision-free, carrying a laundry basket with both arms
from one table through a heavily cluttered room to another
table. The robot also successfully performed docking and
undocking maneuvers with extended arms at a table, thus
maximizing its workspace for manipulation by moving the
base under the table. Our approach found an initial solution
on average within 2 seconds while the highest planning
time for an initial solution was about 7 seconds. This
underlines the efficiency and practicability of our approach
for navigation in mobile manipulation scenarios.

A natural extension for future work will be to move larger
objects such as chairs or carts with articulated primitives [9]
in a cluttered environment, e.g. to store them away under a
table.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office en-
vironment,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2010.

[2] M. Likhachev, http://www.ros.org/wiki/sbpl, 2010.
[3] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,

D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 1999.

[4] I. R. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum
robot installations: A five year experiment,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

[5] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard,
“Autonomous driving in a multi-level parking structure,” in Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 2009.

[6] A. Hornung and M. Bennewitz, “Adaptive level-of-detail planning for
efficient humanoid navigation,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

start

goal

Fig. 9. Visualization of the 3D environment and path taken by the PR2
robot in moving a laundry basket through a cluttered indoor environment.
(Note: The basket itself is not visualized.)

[7] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient motion plan-
ning for humanoid robots using lazy collision checking and enlarged
robot models,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2007.

[8] N. Vahrenkamp, C. Scheurer, T. Asfour, J. J. Kuffner, and R. Dillmann,
“Adaptive motion planning for humanoid robots,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.

[9] J. Scholz, S. Chitta, B. Marthi, and M. Likhachev, “Cart pushing with
a mobile manipulation system: Towards navigation with moveable
objects,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), Shanghai, China, 2011.

[10] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierar-
chical structure for rapid interference detection,” in Proc. of ACM
SIGGRAPH, 1996.

[11] K. Steinbach, J. Kuffner, T. Asfour, and R. Dillmann, “Collision and
self-collision detection for humanoids based on sphere tree hierar-
chies.” in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2006.

[12] S. Quinlan, “Efficient distance computation between non-convex ob-
jects,” in Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 1994.

[13] B. Lau, C. Sprunk, and W. Burgard, “Incremental updates of config-
uration space representations for non-circular mobile robots with 2d,
2.5d, or 3d obstacle models.” in Proc. of the European Conf. on Mobile
Robots (ECMR), 2011.

[14] K. Konolige, “Projected texture stereo,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2010.

[15] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Sucan, “Towards reliable grasping and manipulation in household
environments,” in ISER, New Delhi, India, December 2010.

[16] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, 2010, software available at http://octomap.sf.net/.

[17] “Open dynamics engine,” http://www.ode.org.
[18] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible

maneuvers for autonomous vehicles,” in Int. Journal of Robotics
Research (IJRR), 2009.

[19] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning
control sets for constrained motion planning in discrete state spaces,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2005.

[20] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* search
with provable bounds on sub-optimality,” in Proc. of the Conf. on
Neural Information Processing Systems (NIPS), 2003.


