15-466
Computer Game Programming

Intelligence II: Advanced Decision-Making Mechanisms

Maxim Likhachev
Robotics Institute
Carnegie Mellon University
Advanced Decision-making Mechanisms for this Class

• More on Behavior Trees

• Planning to Achieve the Goal

• Planning with Uncertainty to Achieve the Goal
Advanced Decision-making Mechanisms for this Class

• More on Behavior Trees

• Planning to Achieve the Goal

• Planning with Uncertainty to Achieve the Goal
More on Behavior Trees

• Additional task: *Decorator*
• Has only one child whose execution it controls in a special way

Example:

“*Filter decorators*” decide whether to execute its children based on some conditions.
More on Behavior Trees

- Additional task: *Decorator*
- Has only one child whose execution it controls in a special way

Example:

“Loop decorators” loop until failure

from “Artificial Intelligence for Games” by I. Millington & J. Funge
More on Behavior Trees

• Additional task: *Decorator*
• Has only one child whose execution it controls in a special way

Example:
“Loop decorators” loop until fail

What about behavior trees for groups of characters?

from “Artificial Intelligence for Games” by I. Millington & J. Funge
More on Behavior Trees

• Additional task: *Parallel*
• Executes tasks in parallel until first fails or all succeed

Example:

from “Artificial Intelligence for Games” by I. Millington & J. Funge
More on Behavior Trees

- Additional task: Parallel
- Executes tasks in parallel until first fails or all succeed

More complex example:

```
Interrupter
  └── Keep robbing the bank?
    └── Until fail
        └── Police arrived?

What does it do?
```
Advanced Decision-making Mechanisms for this Class

• More on Behavior Trees

• Planning to Achieve the Goal

• Planning with Uncertainty to Achieve the Goal
Goal-Oriented Behavior

• Beyond hard-coding stimulus-response pairs
• Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)
Goal-Oriented Behavior

• Beyond hard-coding stimulus-response pairs
• Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Three components:

Goals (motives),
How Pressing each Goal is (insistence)
Actions with Expected Impact on the Insistence of Each Goal
Goal-Oriented Behavior

• Beyond hard-coding stimulus-response pairs
• Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Goals with Insistence Values:

Eat = 9, Kill Enemy = 8, Get Healthy = 4

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5)
Kill Enemy (Kill Enemy: -8, Get Healthy: +4)
Get Health Pack (Get Healthy: –2)
Goal-Oriented Behavior

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Goals with Insistence Values:

Eat = 9, Kill Enemy = 8, Get Healthy = 4

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5)

Kill Enemy (Kill Enemy: -8, Get Healthy: +4)

Get Health Pack (Get Healthy: −2)

Pick action that has the best net effect (could be weighted)
Goal-Oriented Behavior

• Beyond hard-coding stimulus-response pairs
• Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:

Goals with Insistence Values:

\[\text{Eat} = 9, \text{Kill Enemy} = 8, \text{Get Healthy} = 4 \]

Actions with Impact on Insistence Values of Goals:

Get Food (Eat: -5)
Kill Enemy (Kill Enemy: -8, Get Healthy: +4)
Get Health Pack (Get Healthy: –2)

Potential problems?

Pick action that has the best net effect (could be weighted)

Negative side effect of the action
Goal-Oriented Behavior

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:
Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies.

Goals with Insistence Values:
\[\text{Eat} = 7, \text{Kill Enemy} = 8, \text{Get Healthy} = 4, \text{NewWeapons} = 1 \]

Actions with Impact on Insistence Values of Goals:
- Get Food (Eat: -5, Get Healthy: +2)
- Kill Enemy (Kill Enemy: -8, Get Healthy: +7)
- Get Health Pack (Get Healthy: -2, Eat: +2)
- Get Weapon (NewWeapons: -1, Get Healthy: +8
 plus Kill Enemy action will have no impact on Health)
Goal-Oriented Behavior

- Beyond hard-coding stimulus-response pairs
- Seeks to satisfy internal goals (e.g., hunger, threat, gold, etc.)

Example:
Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies.

Goals with Insistence Values:

\[\text{Eat} = 7, \text{Kill Enemy} = 8, \text{Get Healthy} = 4, \text{New Weapons} = 1 \]

Actions with Impact on Insistence Values of Goals:

- Get Food (Eat: -5, Get Healthy: +2)
- Kill Enemy (Kill Enemy: -8, Get Healthy: +7)
- Get Health Pack (Get Healthy: -2, Eat: +2)
- Get Weapon (New Weapons: -1, Get Healthy: +8 plus Kill Enemy action will have no impact on Health)
Goal-Oriented Planning

• Beyond single-step decisions

Search-space (graph) for finding a goal that satisfies the necessary constraints:

Example:

initial state is 0000
goal state is 1111
(e.g., bit 0: food is picked up,
bit 1: health pack is picked up,
bit 2: weapon is picked up,
bit 3: enemy is shot)
Goal-Oriented Planning

• Beyond single-step decisions

Search-space (graph) for finding a goal that satisfies the necessary constraints:

The validity of a transition depends on the source state (e.g., can’t shoot enemy if no weapon was picked up)

Example:

initial state is 0000
goal state is 1111
(e.g., bit 0: food is picked up,
bit 1: health pack is picked up,
bit 2: weapon is picked up,
bit 3: enemy is shot)
Goal-Oriented Planning

• Beyond single-step decisions

Search-space (graph) for finding a goal that satisfies the necessary constraints:

Example:
initial state is 0000
goal state is 1111
(e.g., bit 0: food is picked up,
bit 1: health pack is picked up,
bit 2: weapon is picked up,
bit 3: enemy is shot)
Goal-Oriented Planning

• Beyond single-step decisions

Search-space (graph) for finding a partially-defined goal:

Example:

initial state is 0000
goal state is 1111
(e.g., bit 0: food is picked up,
bit 1: health pack is picked up,
bit 2: weapon is picked up,
bit 3: enemy is shot)

What if the goal is to shoot enemy (whether health pack and food are picked up or not)?
Goal-Oriented Planning

- Beyond single-step decisions

Search-space (graph) for finding a partially-defined goal:

Example:
- initial state is 0000
- goal state is 1111
 (e.g., bit 0: food is picked up,
 bit 1: health pack is picked up,
 bit 2: weapon is picked up,
 bit 3: enemy is shot)

What are the efficient way to represent the state vectors?
Goal-Oriented Planning

• Beyond single-step decisions

\[S_1 \]

- \[\text{Hunger: 7; Enemy shot: 0; Health: 4; Weapon: 1} \]

Working out Example with some non-binary variables:

Goals with Insistence Values:

\[\text{Eat} = 7, \text{Kill Enemy} = 8, \text{Get Healthy} = 4, \text{NewWeapons} = 1 \]

Actions with Impact on Insistence Values of Goals:

- Get Food (\[\text{Eat: -5, Get Healthy: +2} \])
- Kill Enemy (\[\text{Kill Enemy: -8, Get Healthy: +7} \])
- Get Health Pack (\[\text{Get Healthy: -2, Eat: +2} \])
- Get Weapon (\[\text{NewWeapons: -1, Get Healthy: +8} \]
 plus Kill Enemy action will have no impact on Health)
Goal-Oriented Planning

- Beyond single-step decisions

\[
S_1 \quad \text{Hunger: 7; Enemy shot: 0; Health: 4; Weapon: 1}
\]

Construct the rest of the graph and find optimal plan

Working out Example with some non-binary variables:

Goals with Insistence Values:

\[
\text{Eat} = 7, \text{Kill Enemy} = 8, \text{Get Healthy} = 4, \text{NewWeapons} = 1
\]

Actions with Impact on Insistence Values of Goals:

- **Get Food** (Eat: -5, Get Healthy: +2)
- **Kill Enemy** (Kill Enemy: -8, Get Healthy: +7)
- **Get Health Pack** (Get Healthy: -2, Eat: +2)
- **Get Weapon** (NewWeapons: -1, Get Healthy: +8 plus Kill Enemy action will have no impact on Health)
Goal-Oriented Planning

- Beyond single-step decisions

Search-space (graph) for finding a partially-defined goal:

Example:
- initial state is 0000
- goal state is 1111
 - (e.g., bit 0: food is picked up,
 bit 1: health pack is picked up,
 bit 2: weapon is picked up,
 bit 3: enemy is shot)
Goal-Oriented Planning

- Beyond single-step decisions

Search-space (graph) for finding a partially-defined goal:

Example:
- initial state is 0000
- goal state is 1111
 (e.g., bit 0: food is picked up,
 bit 1: health pack is picked up,
 bit 2: weapon is picked up,
 bit 3: enemy is shot)

How to search the graph?
DFS, BFS, A*, etc.
Goal-Oriented Planning

• Beyond single-step decisions

Search-space (graph) for partially defined goal:

Example:
 initial state is 0000
 goal state is 1111
(e.g., bit 0: food is picked up,
bit 1: health pack is picked up,
bit 2: weapon is picked up,
bit 3: enemy is shot)

How to search the graph?

DFS, BFS, A*, etc.

Problems with BFS and A* for large state vectors?
Goal-Oriented Planning

- Beyond single-step decisions
- **IDA**: Very popular search for state-spaces with large branching factors and shallow goals
Goal-Oriented Planning

- Beyond single-step decisions
- **IDA**: Very popular search for state-spaces with large branching factors and shallow goals

IDA (Iterative Deepening A*)

1. set $f_{\text{max}} = 1$ (or some other small value)
2. traverse the graph in DFS fashion without expanding states with $f > f_{\text{max}}$
3. If path to the goal found, return the best path it finds
4. Otherwise $f_{\text{max}} = f_{\text{max}} + 1$ and go to step 2
Goal-Oriented Planning

• Beyond single-step decisions
• IDA*: Very popular search for state-spaces with large branching factors and shallow goals

IDA* (Iterative Deepening A*)

1. set $f_{\text{max}} = 1$ (or some other small value)
2. traverse the graph in DFS fashion without expanding states with $f>f_{\text{max}}$
3. If path to the goal found, return the best path it finds
4. Otherwise $f_{\text{max}} = f_{\text{max}} + 1$ and go to step 2

Proof?

• Complete and optimal in any state-space (with positive costs)

• Memory: $O(bl)$, where b – max. branching factor, l – length of optimal path

• Complexity: $O(kbl)$, where k is the number of times DFS is called
Advanced Decision-making Mechanisms for this Class

- More on Behavior Trees

- Planning to Achieve the Goal

- Planning with Uncertainty to Achieve the Goal
Goal-Oriented Planning Under Uncertainty

• Dealing with uncertainty in outcomes

Example:
Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies.
Suppose also there is 50% chance of getting health pack at each attempt.

Goals with Insistence Values:
Eat = 7, Kill Enemy = 8, Get Healthy = 4, New Weapons = 1

Actions with Impact on Insistence Values of Goals:
Get Food (Eat: -5, Get Healthy: +2)
Kill Enemy (Kill Enemy: -8, Get Healthy: +7)
Get Health Pack (Get Healthy: -2, Eat: +2)
Get Weapon (New Weapons: -1, Get Healthy: +8 plus Kill Enemy action will have no impact on Health)
Goal-Oriented Planning Under Uncertainty

• Dealing with uncertainty in outcomes

Example:
Suppose the character is under attack and can pick a weapon that allows it to more effectively shoot the enemies.
Suppose also there is 50% chance of getting health pack at each attempt.

- S1
 - Action: get health pack
 - P=50%
 - S2: Hunger: 9; Enemy shot: 0; Health: 2; Weapon: 1
 - P=50%
 - S3: Hunger: 9; Enemy shot: 0; Health: 4; Weapon: 1
Planning in MDPs

- What plan to compute?
 - Plan that minimizes the worst-case scenario (minimax plan)
 - Plan that minimizes the expected cost
 - Plan that minimizes cost while guaranteeing $P(\text{goal reached}) > t$

- Without uncertainty, plan is a single path:
 a sequence of states (a sequence of actions)

- In MDPs, plan is a policy π:
 mapping from a state onto an action
Planning in MDPs

- What plan to compute?
 - Plan that minimizes the worst-case scenario (minimax plan)
 - Plan that minimizes the expected cost
 - Plan that minimizes cost while guaranteeing $P(\text{goal reached}) > t$

- Without uncertainty, plan is a single path:
 a sequence of states (a sequence of actions)

- In MDPs, plan is a policy π:
 mapping from a state onto an action

Which ones are policies?

Why?
Minimax Formulation

- Optimal policy π^*:
 minimizes the worst cost-to-goal
 $\pi^* = \arg\min_\pi \max_{\text{outcomes of } \pi} \{\text{cost-to-goal}\}$

- worst cost-to-goal for $\pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}})$ is:
 $1+1+3+1 = 6$

- worst cost-to-goal for $\pi_2 = (\text{try to go through } s_1)$ is:
 $1+2+2+2+2+2+2+\ldots = \infty$
Minimax Formulation

\[c(s_1, a_1, s_{\text{goal}}) = 2 \]

\[P(s_{\text{goal}} | s_1, a_1) = 0.9 \]

\[c(s_1, a_1, s_2) = 2 \]

\[P(s_{\text{goal}} | s_1, a_1) = 0.1 \]

• Optimal policy \(\pi^* \):
 minimizes the worst cost-to-goal

\[\pi^* = \arg \min_{\pi} \max \text{ outcomes of } \pi \{ \text{cost-to-goal} \} \]

• Optimal minimax policy \(\pi^* = \pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}}) \)

What are potential problems with minimax approaches?
Expected Cost Formulation

- Optimal policy π^*: minimizes the expected cost-to-goal

\[\pi^* = \arg\min_\pi E\{\text{cost-to-goal}\} \]

- expected cost-to-goal for $\pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}})$ is

\[1+1+3+1=6 \]

- cost-to-goal for $\pi_2 = (\text{try to go through } s_1)$ is:

\[0.9*(1+2+2) + 0.9*0.1*(1+2+2+2+2) + 0.9*0.1*0.1*(1+2+2+2+2+2+2+2) + \ldots = 5.444 \]
Expected Cost Formulation

- Optimal policy π^*: minimizes the *expected* cost-to-goal
 $\pi^* = \text{argmin}_\pi E\{\text{cost-to-goal}\}$

- expected cost-to-goal for $\pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}})$ is
 $1 + 1 + 3 + 1 = 6$

- cost-to-goal for $\pi_2 = (\text{try to go through } s_1)$ is:
 $0.9 \times (1+2+2) + 0.9 \times 0.1 \times (1+2+2+2+2) + 0.9 \times 0.1 \times 0.1 \times (1+2+2+2+2+2+2) + \ldots = 5.444$
Expected Cost Formulation

• Optimal policy π^*: minimizes the *expected* cost-to-goal
 $\pi^* = \operatorname{argmin}_{\pi} E\{\text{cost-to-goal}\}$

• Optimal expected cost policy $\pi^* = \pi_2 = (\text{go through } s_1)$
Minimizing Cost with $P(\text{success}) > t$ constraint

• Optimal path π^* is a path that minimizes the cost-to-goal assuming some outcomes
 $\pi^* = \operatorname{argmin}_\pi \{\text{cost-to-goal}\}$
 s.t. $P(\text{assumed outcomes}) > t$

• for $\pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}})$:
 cost-to-goal = $1+1+3+1 = 6$, $P(\text{success}) = 1$

• for $\pi_2 = (\text{try to go through } s_1)$ is:
 cost-to-goal = $1+2+2 = 5$, $P(\text{success}) = 0.9$
Minimizing Cost with $P(\text{success}) > t$ constraint

- Optimal path π^* is a path that minimizes the cost-to-goal assuming some outcomes $\pi^* = \arg\min_{\pi} \{\text{cost-to-goal}\}$ s.t. $P(\text{assumed outcomes}) > t$

 - for $t > 0.9$, $\pi^* = \pi_1 = (s_{\text{start}}, s_2, s_4, s_3, s_{\text{goal}})$

 - for $t \leq 0.9$, $\pi^* = \pi_2 = (\text{try to go through } s_1)$
Computing Expected Cost Minimal Plans

- Optimal policy π^*:
 minimizes the expected cost-to-goal
 $$\pi^* = \arg\min_\pi E\{\text{cost-to-goal}\}$$

- Let $v^*(s)$ be minimal expected cost-to-goal for state s
Computing Expected Cost Minimal Plans

- Optimal policy \(\pi^* \):
 \[
 \pi^*(s) = \arg\min_a E\{c(s,a,s') + v^*(s')\}
 \]
 (expectation over outcomes \(s' \) of action \(a \) executed at state \(s \))

\[
\begin{align*}
S_{\text{start}} & \rightarrow S_2 & S_2 & \rightarrow S_1 & a_1 & \rightarrow S_{\text{goal}} \\
1 & & 2 & & P(s_{\text{goal}}|s_1,a_1)=0.9 & c(s_1,a_1,s_{\text{goal}}) = 2 \\
S_4 & \rightarrow S_2 & S_1 & \rightarrow S_{\text{goal}} \\
1 & & 1 & & c(s_1,a_1,s_2) = 2 & P(s_{\text{goal}}|s_1,a_1)=0.1 \\
S_4 & \rightarrow S_3 & S_3 \\
3 & & 1 & & \\
\end{align*}
\]
Computing Expected Cost Minimal Plans

- Optimal expected cost-to-goal values v^* satisfy:
 \[
 v^*(s_{goal}) = 0 \\
 v^*(s) = \min_a E\{c(s,a,s') + v^*(s')\} \text{ for all } s \neq s_{goal} \\
 \text{(expectation over outcomes } s' \text{ of action } a \text{ executed at state } s) \\
 \]

Bellman optimality equation
Computing Expected Cost Minimal Plans

- **Value Iteration (VI):**

 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:

 $v(s_{\text{goal}}) = 0$
 $v(s) = \min_a E\{c(s,a,s') + v(s')\}$ for any $s \neq s_{\text{goal}}$
Computing Expected Cost Minimal Plans

- **Value Iteration (VI):**

 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:

 $$v(s_{goal}) = 0$$
 $$v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}$$

 converges to an optimal value function
 (v(s)=v^(s) for all s)*
 for any iteration order

 best to initialize to admissible values
 (under-estimates of the actual costs-to-goal)

 convergence time does depend a lot on iteration order
Computing Expected Cost Minimal Plans

• Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

$$v(s_{goal}) = 0$$
$$v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}$$

converges to an optimal value function
($v(s)=v^*(s)$ for all s)
for any iteration order

convergence time does depend a lot on iteration order

best to initialize to admissible values
(under-estimates of the actual costs-to-goal)

Any ideas for the order?
Computing Expected Cost Minimal Plans

- Value Iteration (VI):
 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:
 \[
 v(s_{goal}) = 0 \\
 v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}
 \]

Bellman update equation (or backup)
Computing Expected Cost Minimal Plans

![Diagram of a Markov Decision Process (MDP)]

- **Value Iteration (VI):**

 Initialize v-values of all states to finite values;

 Iterate over all s in MDP and re-compute until convergence:

 $v(s_{goal}) = 0$

 $v(s) = min_a E\{c(s,a,s') + v(s')\}$ for any $s \neq s_{goal}$
Computing Expected Cost Minimal Plans

- Value Iteration (VI):
 - Initialize v-values of all states to finite values;
 - Iterate over all s in MDP and re-compute until convergence:
 \[
 v(s_{goal}) = 0 \\
 v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}
 \]
Computing Expected Cost Minimal Plans

- **Value Iteration (VI):**

 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:

 $$v(s_{goal}) = 0$$

 $$v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}$$

- Diagram:
 - States: S_{start}, S_1, S_2, S_3, S_4, S_{goal}
 - Transitions: $P(s_{goal}|s_1,a_1) = 0.9$,
 $c(s_1,a_1,s_{goal}) = 2$
 - Values:
 - $v(S_2) = 1$
 - $v(S_1) = 2$
 - $v(S_3) = 1$
 - $v(S_4) = 0$
 - $v(S_{goal}) = 0$ after backing up S_3
Computing Expected Cost Minimal Plans

\[c(s_1, a_1, s_{\text{goal}}) = 2 \]

\[P(s_{\text{goal}}|s_1, a_1) = 0.9 \]

\[P(s_{\text{goal}}|s_1, a_1) = 0.1 \]

\[v(s_{\text{goal}}) = 0 \]

\[v(s) = \min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{\text{goal}} \]

- Value Iteration (VI):
 - Initialize \(v \)-values of all states to finite values;
 - Iterate over all \(s \) in MDP and re-compute until convergence:

 \[v(s_{\text{goal}}) = 0 \]

\[v(s) = \min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{\text{goal}} \]
Computing Expected Cost Minimal Plans

- Value Iteration (VI):
 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:

 $$v(s_{goal}) = 0$$
 $$v(s) = \min_{a} E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}$$

 Usual convergence condition: Bellman error over all states $< \Delta$
 Bellman error: $|v(s) - \min_{a} E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{goal}$
Computing Expected Cost Minimal Plans

\begin{itemize}
\item Value Iteration (VI):
\end{itemize}

Initialize \(v \)-values of all states to finite values;
Iterate over all \(s \) in MDP and re-compute until convergence:

\[
v(s_{goal}) = 0
\]
\[
v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}
\]

Usual convergence condition: Bellman error over all states < \(\Delta \)
Bellman error: \[|v(s) - \min_a E\{c(s,a,s') + v(s')\}| \text{ for any } s \neq s_{goal}\]
Computing Expected Cost Minimal Plans

\[
c(s_1, a_1, s_2) = 2
\]
\[
P(s_{goal} | s_1, a_1) = 0.9
\]
\[
c(s_1, a_1, s_{goal}) = 2
\]

- Value Iteration (VI):

 Initialize \(v \)-values of all states to finite values;

 Iterate over all \(s \) in MDP and re-compute until convergence:

 \[
v(s_{goal}) = 0
 \]
 \[
v(s) = \min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}
 \]

 Usual convergence condition: Bellman error over all states < \(\Delta \)

 Bellman error: \[|v(s) - \min_a E\{c(s, a, s') + v(s')\}| \text{ for any } s \neq s_{goal}\]
Computing Expected Cost Minimal Plans

- Value Iteration (VI):
 Initialize v-values of all states to finite values,
 Iterate over all s in MDP and re-compute until convergence:

 $v(s_{goal}) = 0$

 $v(s) = \min_a E\{c(s,a,s') + v(s')\}$ for any $s \neq s_{goal}$

 Usual convergence condition: Bellman error over all states $< \Delta$
 Bellman error: $|v(s) - \min_a E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{goal}$

How to select backups more effectively?
Computing Expected Cost Minimal Plans

- **Value Iteration (VI):**

 Initialize v-values of all states to finite values;

 Iterate over all s in MDP and re-compute until convergence:

 $$v(s_{\text{goal}}) = 0$$
 $$v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{\text{goal}}$$

 Usual convergence condition: Bellman error over all states < Δ

 Bellman error: $|v(s) - \min_a E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{\text{goal}}$
Computing Expected Cost Minimal Plans

• Value Iteration (VI):
 Initialize v-values of all states to finite values;
 Iterate over all s in MDP and re-compute until convergence:
 \[
 v(s_{goal}) = 0 \\
 v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}
 \]

 Usual convergence condition: Bellman error over all states $< \Delta$
 Bellman error: \[|v(s) - \min_a E\{c(s,a,s') + v(s')\}| \text{ for any } s \neq s_{goal}\]
Computing Expected Cost Minimal Plans

\[
\begin{align*}
S_4 & \xrightarrow{3} S_3 & v=4 \\ S_3 & \xrightarrow{1} a_1 & c(s_1,a_1,s_2) = 2 \\ S_1 & \xleftarrow{1} P(s_{goal}|s_1,a_1)=0.9 \\
& & P(s_{goal}|s_1,a_1)=0.1 \\ S_2 & \xrightarrow{2} v=4.41 \\ S_1 & \xrightarrow{v=2.41} \text{(after backing up } s_2) \\
S_{start} & \xrightarrow{v=5.1} 1
\end{align*}
\]

- **Value Iteration (VI):**
 - Initialize \(v \)-values of all states to finite values;
 - Iterate over all \(s \) in MDP and re-compute until convergence:
 - \(v(s_{goal}) = 0 \)
 - \(v(s) = \min_a E\{c(s,a,s') + v(s')\} \) for any \(s \neq s_{goal} \)

Usual convergence condition: Bellman error over all states < \(\Delta \)
*Bellman error: \(|v(s) - \min_a E\{c(s,a,s') + v(s')\}| \) for any \(s \neq s_{goal} \)
Computing Expected Cost Minimal Plans

Value Iteration (VI):
Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

\[
v(s_{\text{goal}}) = 0
\]
\[
v(s) = \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{\text{goal}}
\]

Usual convergence condition: Bellman error over all states $< \Delta$
Bellman error: $|v(s) - \min_a E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{\text{goal}}
Computing Expected Cost Minimal Plans

\begin{align*}
 c(s_1, a_1, s_2) &= 2 \\
 P(s_{goal}|s_1, a_1) &= 0.9 \\
 c(s_1, a_1, s_{goal}) &= 2
\end{align*}

\begin{align*}
 P(s_{goal}|s_1, a_1) &= 0.1 \\
 v(s) &= \min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}
\end{align*}

- Value Iteration (VI):
 \begin{enumerate}
 \item Initialize \(v \)-values of all states to finite values;
 \item Iterate over all \(s \) in MDP and re-compute until convergence:
 \begin{align*}
 v(s_{goal}) &= 0 \\
 v(s) &= \min_a E\{c(s, a, s') + v(s')\} \text{ for any } s \neq s_{goal}
 \end{align*}
 \end{enumerate}

Usual convergence condition: Bellman error over all states < \(\Delta \)

Bellman error: \(|v(s) - \min_a E\{c(s, a, s') + v(s')\}| \text{ for any } s \neq s_{goal}\)
Computing Expected Cost Minimal Plans

\[c(s_1, a_1, s_{\text{goal}}) = 2 \]
\[c(s_1, a_1, s_2) = 2 \]
\[P(s_{\text{goal}}|s_1, a_1) = 0.9 \]
\[P(s_2|s_1, a_1) = 0.1 \]
\[P(s_3|s_2) = 0.1 \]
\[P(s_4|s_2) = 0.3 \]
\[v(s_1) = 2.441 \]
\[v(s_2) = 4.441 \]
\[v(s_3) = 1 \]
\[v(s_4) = 5.41 \]

• Value Iteration (VI):
 Initialize \(v \)-values of all states to finite values;
 Iterate over all \(s \) in MDP and re-compute until convergence:
 \[v(s_{\text{goal}}) = 0 \]
 \[v(s) = \min_a E\{c(s,a,s')+v(s')\} \text{ for any } s \neq s_{\text{goal}} \]

 Usual convergence condition: Bellman error over all states < \(\Delta \)
 Bellman error: \(|v(s) - \min_a E\{c(s,a,s')+v(s')\}| \text{ for any } s \neq s_{\text{goal}} \)
Computing Expected Cost Minimal Plans

Value Iteration (VI):

Initialize \(v \)-values of all states to finite values;
Iterate over all \(s \) in MDP and re-compute until convergence:

\[
\begin{align*}
 v(s_{\text{goal}}) &= 0 \\
 v(s) &= \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{\text{goal}}
\end{align*}
\]

Usual convergence condition: Bellman error over all states < \(\Delta \)
Bellman error: \(|v(s) - \min_a E\{c(s,a,s') + v(s')\}| \text{ for any } s \neq s_{\text{goal}} \)
Computing Expected Cost Minimal Plans

• Value Iteration (VI):

Initialize \(v \)-values of all states to finite values;
Iterate over all \(s \) in MDP and re-compute until convergence:

\[
\begin{align*}
 v(s_{goal}) &= 0 \\
 v(s) &= \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{goal}
\end{align*}
\]

Usual convergence condition: Bellman error over all states < \(\Delta \)
Bellman error: \(|v(s) - \min_a E\{c(s,a,s') + v(s')\}| \) for any \(s \neq s_{goal} \)

At convergence...

every iteration computes one more decimal point
Computing Expected Cost Minimal Plans

Value Iteration (VI):

- Initialize v-values of all states to finite values;
- Iterate over all s in MDP and re-compute until convergence:

$$\begin{align*}
v(s_{\text{goal}}) &= 0 \\
v(s) &= \min_a E\{c(s,a,s') + v(s')\} \text{ for any } s \neq s_{\text{goal}}
\end{align*}$$

At convergence...

- Usual convergence condition: Bellman error over all states $< \Delta$
- Bellman error: $|v(s) - \min_a E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{\text{goal}}$

expected cost of executing greedy policy is at most:

$$v^*(s_{\text{start}})c_{\text{min}}/(c_{\text{min}} - \Delta)$$

where c_{min} is minimum edge cost

optimal policy is given by greedy policy:
always select an action that minimizes $E\{c(s,a,s') + v(s')\}$

every iteration computes one more decimal point

Initialize v-values of all states to finite values;
Computing Expected Cost Minimal Plans

• Value Iteration (VI):

 Initialize v-values of all states to finite values,

 Iterate over all s in MDP and re-compute until convergence:

 $\nu(s_{goal}) = 0$

 $\nu(s) = \min_a E\{c(s,a,s') + \nu(s')\}$ for any $s \neq s_{goal}$

 Usual convergence condition: Bellman error over all states $< \Delta$

 Bellman error: $|\nu(s) - \min_a E\{c(s,a,s') + \nu(s')\}|$ for any $s \neq s_{goal}$

VI converges in finite number of iterations (assuming goal is reachable from every state)

Why condition?
• Value Iteration (VI):

Initialize v-values of all states to finite values;
Iterate over all s in MDP and re-compute until convergence:

$v(s_{goal}) = 0$
$v(s) = \min_a E\{c(s,a,s') + v(s')\}$ for any $s \neq s_{goal}$

Usual convergence condition: Bellman error over all states $< \Delta$

Bellman error: $|v(s) - \min_a E\{c(s,a,s') + v(s')\}|$ for any $s \neq s_{goal}$