

Abstract—TraSMAPI (Traffic Simulation Manager

Application Programming Interface) is designed to provide

real-time interaction with Traffic Simulators, collect relevant

metrics and statistics, and offer an integrated framework to

develop Multi-Agent Systems. It is presented as a tool for the

simulation of dynamic control systems in road networks with

special focus on Multi-Agent Systems. The abstraction over the

simulator opens up the possibility of running different traffic

simulators using the same API (application programming

interface) allowing the comparison of results of the same

application in different simulators. The proposed approach is,

therefore, expected to be a key asset in supporting and

enhancing engineers and practitioners to make more effective

control decisions and implement more efficient management

policies while analyzing and addressing traffic related problems

in urban areas.

I. INTRODUCTION

raffic management is widely accepted as an important

problem in modern society as it is responsible for

keeping a steady flow of people, goods and services within

cities. The quality of this flow directly affects the city’s

economy and general well-being of the population. We feel,

however, that this problem has not been satisfactorily solved

and, therefore, our vision is to create tools which allow us to

study this complex problem and create solutions which

would maximize the use and efficiency of a city’s road

network.

This paper focuses on the implementation of three such

tools: an Application Programming Interface (API) which

allows real-time interaction between traffic-management

agents and the environment created by the simulator; a

traffic-oriented Statistics module to assess the performance

of the solution and to provide historical statistics which will

be essential for learning agents; and a Multi-Agent System

framework specifically designed to use the API efficiently

which allows the exchange of messages between the agents

and infinite (though a threshold can be defined) negotiation

between agents before reaching a stable state. These tools

provide a solid basis on which to develop new solutions

aiming at Efficient Traffic Management.

Our API is designed to provide real-time interaction with

Traffic Simulators because one of the major flaws we found

in traffic control systems was that they were very static in

their approach, taking little to none information from their

domain. Real-time interaction enables the simulation of

dynamic control systems which can adapt according to their

environments and offer the most appropriate, if not the best,

solution to the specific traffic situation that is being

addressed. We built our API in an abstraction level higher

than most common Microscopic Traffic Simulators so that it

can be independent from the simulator being used allowing

the comparison of results from different simulators using

exactly the same solution. The great diversity of the

information available and possible actions over the

simulation environment renders possible the simulation of a

large range of scenarios and real-world applications.

We are interested in Efficient Traffic Management of the

road network rather than addressing specific local problems.

In fact, we believe that searching for integrated solutions

having the whole network as basis will lead to better results.

However, it is eventually reduced to finding local solutions

taking other local solutions into consideration and expecting

some kind of swarm behaviour. Another interesting point is

that traffic agents in real world tend to behave very selfishly.

Drivers never think of the quality of the flow of the road

network they are travelling in. Instead, they just aim at their

own efficiency, attempting to arrive to their destination as

soon as possible. Having this in mind, we opted for a Multi-

Agent System approach since we believe that a set of

autonomous agents is a good metaphor for such distributed

and complex domains as traffic management. In fact, it has

been widely used by the community working on traffic

analysis as suggested by Schleiffer [1].

With these premises, it is possible to simulate a wide

range of real-world applications, such as: a GPS/Satellite

system which receives local information from a vehicle and

spreads that information to the others; a vehicle re-routing

system; a vehicle-to-vehicle wireless advice system; a group

of independent autonomous agents controlling traffic lights

and sharing information about their local environment to

neighbours, etc. These simulation applications are all

possible because we can rely on the agents’ direct access to

an object of the simulation, i.e. agents can be assigned to

traffic lights, vehicles, lanes, etc., by having a reference to

the object in the simulation. For instance, with one agent

TraSMAPI: An API Oriented Towards Multi-Agent Systems Real-

Time Interaction with Multiple Traffic Simulators

Ivo J.P.M. Timóteo, Miguel R. Araújo, Rosaldo J.F. Rossetti, Member, IEEE, Eugenio C. Oliveira

Department of Informatics Engineering

Artificial Intelligence and Computer Science Lab

Faculty of Engineering, University of Porto

Rua Dr Roberto Frias S/N, 4200–465 Porto, Portugal

{ivo.timoteo, miguel.araujo, rossetti, eco}@fe.up.pt

T

2010 13th International IEEE
Annual Conference on Intelligent Transportation Systems
Madeira Island, Portugal, September 19-22, 2010

TB7.5

978-1-4244-7659-6/10/$26.00 ©2010 IEEE 1183

responsible for each vehicle, a vehicle-to-vehicle wireless

advice system is reduced to the decision algorithm since

everything else is already available in TraSMAPI.

There are many other application possibilities and we

aimed at the creation of a tool generic enough to be able to

respond to the maximum possible situations with the

minimum effort by the application designer.

II. BASIC COMPONENTS OF TRAFFIC AND TRANSPORT

ANALYSIS

Traffic and transportation systems are heterogeneous and

stochastic domains in nature whose processes are rather

dependent on stochastic phenomena. This means their

entities can play different roles and pursue different goals

while interacting with each other in a very unpredictable

environment. Urban travel demand and traffic flow

modelling have progressively evolved over the last forty or

fifty years into an established methodology, commonly

referred to as the traditional, or classical, approach called the

“four-step” model [2]. This model has been devised to

address travel demand, both spatial and temporal, through

four basic procedures named trip generation, trip

distribution, modal split and trip assignment. These

procedures try to encompass every aspect of an individual’s

decision-making process in order to produce a representation

as realistic as possible of the whole system. Traffic

management systems need to integrate the supply side that

represents infrastructure elements, as well as control

decisions and management policies.

The first phase in this classical approach, trip generation,

intends to reproduce the numbers of trips originating and

ending in certain zones of the transport network. Trip

distribution is the next step which consists in distributing

each of the trips obtained in the first phase across various

destinations. When trip distribution finishes, modal split

takes place. Each of the origin-destination volumes are now

“split” or distributed into various alternative modes

(typically, deciding which mode of transport will be used).

The order in which trip distribution and modal split happen

is sometimes disregarded. Finally, in the trip assignment

step, modal trips from a given origin to a given destination

on a given mode, as obtained in the preceding phases, are

assigned to the network’s links, more precisely, routes

between origins and destinations.

Ever since this approach was first proposed, integration

has been an issue many systems have been trying to address.

However, the complexity inherent to the application domain

is considered a development bottleneck hard to overcome.

Thus, the way towards integrated transport analysis tools is

sometimes accomplished through a collection of independent

and difficult-to-integrate models addressing specific issues of

the original model in which simulation is very often an

important instrument.

The relationships identified in the transportation domain

brought into evidence the social aspects involved in the

interaction among various autonomous entities that inhabit a

common environment. In fact, contemporary transportation

solutions, especially those related to traffic control and

management, are achieving a high degree of autonomy and

starting to interact closer with the users. Vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communications,

autonomous vehicles, ad-hoc sensor networks, mobile

computing and many other contemporary ubiquitous

technologies are now transforming the way traffic and

transport in urban areas interacts with users. The benefits

promise to be mutual, as shown by some encouraging recent

results. Whether such a novel interaction between demand

and supply is to last on an efficient and sustainable basis is

still to be confirmed. This will be possible only through the

use of appropriate and advanced analysis tools, capable of

covering and supporting a wide range and variety of

parameters and dimensions that current simulation tools do

not support.

In this context, the agent metaphor seems to represent a

very propitious way to model such a domain. It eases the

representation of the social interactions now playing a

decisive role in the overall system performance as users

explicitly interact with the system and it starts to behave

rather intelligently. Such a scenario gives rise to the concept

of Artificial Transportation Systems (ATS), allowing these

characteristics to be modelled and tested in controlled

environments where different kinds of interactions can be

verified. In such systems, two main sorts of interactions are

especially worth being mentioned: on the one hand, supply

entities, such as control elements, act in a rather

collaborative way trying to find an optimum performance

set-up for the system, whereas on the other hand users

usually act in a competitive way, seeking self improvement

and the maximisation of their own benefits disregarding the

effects their actions can have upon others’ performance. In

the next section we shall discuss on the concepts of agents

that underlie the implementation of ATS.

III. AUTONOMOUS AGENTS AND THEIR APPLICATIONS TO

TRAFFIC AND TRANSPORT

Before going deeper into the specification of our

approach, some discussion on key concepts related to

autonomous agents, their relationships and how applicable

they are to the field of traffic and transport is necessary.

Multi agent-based models become a natural metaphor to

represent domains where such a large number of intelligent

and autonomous entities interact with each other and with the

environment. These models are being increasingly used

within analysis frameworks as an effective tool to aid the

understanding of complex and stochastic phenomena. Traffic

and transportation systems have profited from and stimulated

much research on the development of agent-based

technologies. As we shall see in the following discussion,

most applications of Multi-Agent Systems (MAS) to traffic

1184

and transport end up with traffic control and management,

being other forms basically relegated to a secondary spot.

The main premise in multi-agent systems is to interpret

real world in terms of agents that exhibit intelligence,

autonomy, and some degree of interaction with other agents

and with its environment. Other characteristics of agents

include reactivity, adaptability, pro-activity, and the ability

to communicate and to behave socially. The basic structure

of an agent features sensors through which it can gather

information from the environment, and effectors through

which it can act and behave according to its objectives [3].

This structure can feature both reactive and cognitive

abilities, and a mixture of both, to mimic human behaviour in

a wide range of applications. Steels [4] suggests that each

single agent, albeit possibly having a very simple structure,

can contribute to a more complex and efficient behaviour of

the system as a whole. If the behaviour of such single agent

can be backtracked, then this can be used to aid the

understanding of the more complex behaviours at aggregate

level, such as the social phenomena for instance.

To the best of our knowledge, some former attempts to

apply agent-based techniques to address transportation issues

date back to the 90’s. For instance, Haugeneder and Steiner

[5] proposed a co-operative agent-based architecture as a

means to improve traffic management and control [6]. If in

the beginning people from AI community benefited from the

intrinsic complex and dynamic nature of transportation

systems to devise and support agent theory, transportation

engineers and practitioners have now started to recognise the

natural ability of the multi-agent metaphor to model traffic

phenomena. Owing to their characteristics and concepts,

multi-agent systems have a natural aptitude to cope with a

wide range of issues in contemporary traffic and

transportation scenarios [1].

In this work we focus on the cognitive abilities of

autonomous agents to devise a multi-agent architecture to

underlie the implementation of an environment in order to

analyse and test with different traffic control strategies and

management policies effectively. The MAS-based approach

herein proposed is conceived in a way agents can be easily

instantiated and can interact both autonomously and

cooperatively through a specific interaction protocol that

fosters short-term strategy as well as long-term tactic control

and management decisions. The potentials of such an

analysis tool are enormous, which shall be discussed later on

in the paper.

IV. GOALS AND GENERAL ARCHITECTURE

As seen in previous sections, such a large domain requires

several systems to interact in order to achieve a

comprehensive model of reality. Researchers would profit

from an easy-to-use development environment, independent

of the simulator and independent of the other building blocks

of the simulation (as defined earlier, namely supply and

demand).

Researchers typically want to develop a specific

component, but still retain the ability to interact with others.

For instance, an application for V2V communication would

require the implementation of vehicle agents (possibly

leaving to the simulator the control of some vehicles), and

still use the simulator’s traffic light states. Another example

could be a traffic light controller, which would implement a

traffic light agent. This agent certainly needs to interact with

vehicles, though its creator might not be interested in

building a specific vehicle agent.

All this interactions are accomplished by defining agents

and object controllers directly responsible for an element of

the simulator environment. To the agent’s creator, the

simulator being used and the other agents (unless he wishes

to communicate with them) are completely transparent.

Given the simulator independence, solutions can be easily

tested in several simulators providing richer results. This

multi-simulator testing increases the validity of the built

solution, as solutions are not simulator-crafted. It is

especially important when implementing intelligent systems,

as they will not use simulator-specific characteristics, or

simulation flaws, during their learning phase.

TraSMAPI is made of different independent modules

which interact with each other to form the whole solution, as

seen in Fig. 1. The decision to make the solution modular

was motivated so as to make the solution prone to

collaborative development and to allow the development and

integration of new modules without major difficulties. This is

important as we aim to provide a basic framework for the

simulation of Traffic Management Systems. This way, the

developers of specific applications using this solution will,

most certainly, want to create new abstractions over the

existing modules to further adapt to their specific problem.

These new abstractions can be easily implemented by adding

new modules which will then communicate with the existing

ones creating a more complex and specific solution (e.g. a

new module representing a GPS System working in real time

Fig. 1. General architecture of TraSMAPI showing the interactions

among different modules

1185

over the simulation can be easily built. It would use the

Communication and Statistics modules in order to obtain the

same information it would need to retrieve, as a GPS System

would in the real world).

A. Architecture Overview

The general architecture of TraSMAPI is based on

modules each with a well-defined function in the whole

system (Fig. 1. may be useful for the reader to have a correct

understanding of the current section).

The researcher is responsible for selecting the simulator to

be used (given it is supported by the API) and for

implementing the desired agent. TraSMAPI uses Java

objects in order to hide several layers used by the agent.

Ideally, the agent should be independent of the simulator

chosen. This is guaranteed as far as the simulators chosen

allow it, and provided that their communication interface

differs and they do not implement the same set of features.

During the rest of this section, TraSMAPI hidden layers

will be described.

B. Modules Specification

The application is organized in three main Modules: the

Communication Module, the Statistics Module, and the

Multi-Agent System Framework. These modules will now be

analysed in further detail.

1) Communication Module

The communication module provides the basic API for the

interaction with the simulator. The interaction is based on

queries, to gain knowledge on the environment state, and

orders, to change the state of the environment. The exchange

of information is usually done by remote communication

technologies in order to keep the modularity and the

simulator running completely independent from the

communication module (the exact communication

technology used is dependent on the simulator over which

the abstraction is being built).

In its lowest abstraction level, the Communication Module

is based in a set of methods responsible for simple message

exchanging. These methods are reused if distinct simulators

use the same remote communication technology.

Immediately above this level there are the methods

responsible for the implementation of the communication

protocol (i.e. message order, content and timing so as to

query the simulator) which is dependent on the simulator.

With this set of methods it is possible to build all the higher

level queries and orders.

The most commonly used and widely implemented queries

allow us to know information about the vehicle position, the

vehicle speed, the vehicle route, a lane’s maximum allowed

speed, a specific traffic light state, the lanes leading to a

specific traffic light, the amount of vehicles passing over an

induction loop, and their speed, and so forth.

The orders allow us to change things such as the state of

the traffic light, the maximum speed of a lane, the route of a

vehicle, and the speed of a vehicle.

Naturally, more complex queries can be built from these

simple requests (e.g. the number of vehicles waiting in a

traffic light lane – combining the position and speed of a

vehicle and comparing the lane to one of the lanes leading to

the traffic light.)

2) Statistics Module

The Statistics Module is a passive module that does not

interfere directly with the simulation. However, it is very

important to develop real-world applications. The Statistics

Module records all the information regarding the simulation

environment of the different simulation steps using the

Communication Module to access the Traffic Simulator for

the data.

The Statistics Module stores the information of every

simulation step and implements a simple query interface thus

acting as a historical archive. However, the Statistics Module

was created and is mainly used to assess performance at the

end of the simulation and to provide past-dependent statistics

useful to intelligent agents. The actual statistics that a

developer would like to retrieve are dependent on the

simulation he intends to run and are hard to predict. With

that in mind we assumed that the developer of the application

would implement its own methods for statistics retrieval.

Taking into consideration performance issues and

assessment requirements of the traffic light agent, these

metrics were considered useful and were implemented:

traffic light throughput and vehicles average waiting time in

the traffic light queue. These values can be retrieved from

the present, specific points in simulation or sums or averages

of the last n simulation steps.

3) The Multi-Agent System Framework

The Multi-Agent System Framework is a module that is

meant to serve as a starting point for the creation of Multi-

Agent Systems. Its Framework allows the creation of new

agents by following a common interface. There is a

moderator between the agents and the API which controls

the flow of information between the agents and between the

agents and the simulation environment.

The agents themselves are created with a reference to an

object with direct access to the simulation environment so

that they can query and change the environment

autonomously. The Multi-Agent System Framework however

ensures that two agents cannot be accessing or altering

information from the simulation environment simultaneously

to guarantee the integrity of the data. It will then wait for

every agent to declare themselves as “ready” and then

advance one simulation step.

The communication in the Multi-Agent System

Framework is based on an asynchronous message system,

and is depicted in Fig. 2. The agents have their own message

queue in which other agents, and the moderator, might leave

information. This information is variable and highly

dependent on the implementation and goals of the

application (e.g. the messages can be information requests,

answers to requests previously made, advice, general

messages sent by the moderator to control the flow of the

1186

negotiation, and more).

Each agent executes on its own thread, in order to be able

to go to hibernation when it has declared himself “ready” (so

that it would not waste processor time) and wait until the

simulation advances one simulation step or there is a new

message in his message queue. This opens up the possibility

of an agent to declare himself “ready” and then remove

himself from that state if a new message arrives at his

message queue opening the possibility of an infinite

exchange of messages between agents (a maximum value of

negotiation rounds should be defined in case the Multi-Agent

System cannot reach a stable state, though).

V. A SIMPLE EXAMPLE

This section was included in order to demonstrate how a

simple application can be written using TraSMAPI.

We decided to implement a simple Traffic Light

Controller Agent on a road intersection between a general

use road and a road used solely by priority vehicles. The

Traffic Light Controller Agent should change the state of the

traffic light when a priority vehicle approaches, detecting it

with an induction loop, to allow it to pass the intersection

without stopping as shown in Fig. 3. The simulator used in

this simple application was the SUMO [7] simulator.

There are two main objects responsible for the simulator

connection and agent interaction which need to be created by

our application. The TraSMAPI object is used for general

simulation control: launching the simulator, connecting and

time control. The MAS object is responsible for the

interaction among the different agents, including message

exchange, and is responsible for communicating to the agent

changes in the status of the simulation.

The next step consists in creating an Agent and

implementing the Agent interface. It can be easily done

following a template though writing one from scratch is

possible and allows greater customization. The agent might

be as complex as one wishes, from a static traffic light to a

complex, predictive, social controller (in more complex

solutions, it is natural to make more complex queries such as

the number of vehicles stopped on a given lane or even use

the Statistics Module to infer traffic density on different

lanes based on the recent past activity).

Our traffic light agent uses a TrafficLight object

representing the traffic light in the simulation environment.

This TrafficLight object can be used both to query the

simulator and to change the traffic light’s state. This is done

by calling its methods as if we were acting over the

simulation object (i.e. the object in the simulator), hiding all

the communication tasks underneath.

The other agent we created was responsible for the

induction loop. Even though this agent is not strictly needed

since the traffic light agent could query the information

relative to the induction loop without violating our multi-

agent metaphor, we opted to create it for the sake of

demonstration – in this case, of the MAS communication

system. The agents were then added to the MAS object to be

managed.

The induction loop agent is then programmed to retrieve

the instant velocity of the priority vehicle when passing over

the induction loop and to transmit that information, via the

Multi-Agent System Framework message system, to the

traffic light agent. The traffic light agent, using that

information, schedules the change of the traffic light state.

Despite simple, this example uses most features implemented

in the system architecture, as well as the collaboration

protocol that was devised.

Finally, we assessed our solution using the Statistical

Module where we gave special emphasis to the waiting time

of the vehicles at the intersection, being the priority vehicles

heavily penalized. Naturally, our solution had better results

Fig. 2. TraSMAPI message mechanism

Fig. 3. An intersection between a road with normal traffic (horizontal)

and a road reserved to priority vehicles (vertical), simulated using

SUMO [7]. The induction loop is visible on the vertical road (white

square)

1187

than the static solution.

With this very simple example we were able to use the

main features of TraSMAPI such as the Multi-Agent System

Framework, its agent-to-agent message system, the basic

queries of the Communication Module and the Statistics

Module.

VI. CONCLUSION AND FUTURE WORK

We are confident that with the creation of generic tools

that can serve as basis for the development of traffic

management systems we are giving the community the

possibility of focusing more on the solutions and less on the

implementation details. Having the tool previously described

as a starting point allows the developers to skip the set up for

the implementation of their applications spending more time

of their research looking for actual solutions.

Therefore, future work with TraSMAPI will not be

primarily on the tool design and features but rather on the

applications that can be developed using it. In fact, the

architecture and abstraction made with TraSMAPI enables

the development of a broad spectrum of solutions concerning

Efficient Traffic Management.

With the GPS becoming a common gadget and its massive

use by civil vehicles it is plausible to think of an Advice

System based on the information retrieved from the GPS.

The vehicles would inform a central system of their position

and the system would return advice on the best route

available. This kind of system is easily simulated using

TraSMAPI given that it is possible to retrieve each vehicle’s

position using the Communication Module and the exchange

of advice is also simplified by the message communication

implemented among agents.

It is arguable that a centralized system like the one

explained before is impossible to implement efficiently given

that it is highly dynamic and the domain is very large.

However, it is also possible to create a wireless vehicle-to-

vehicle advice system in which the vehicles would “shout”

messages about the flow of the traffic to all the neighboring

vehicles. If we consider that important messages would be

propagated to more than one node, it is not hard to believe

that every vehicle in the network would benefit from updated

information about the network state. This kind of

information together with the information of location and

routing provided by the trivial GPS could give birth to a re-

routing system that, looking at local solutions, would

improve the flow of the entire network.

In a more passive fashion from the point of view of the

driver, we can think of intelligent traffic control agents such

as traffic lights, variable speed signs, and others. These could

adapt to the traffic conditions locally and communicate to

improve the flow of the network as a whole.

ACKNOWLEDGMENT

This work has been partially supported by FCT, the

Portuguese Agency for R&D, within the BII Framework

(Integration into Research Grants).

REFERENCES

[1] Schleiffer, R. (2002). Intelligent agents in traffic and transportation.

Transportation Research, 10C, 325-329.

[2] Oppenheim, N. (1995) Urban travel demand modeling: from

individual choices to general equilibrium. Wiley, New York.

[3] Russell, S. J. and P. Norvig (1995). Artificial intelligence: a modern

approach. Prentice-Hall, Englewood Cliffs.

[4] Steels, L. (1990). Cooperating between distributed agents through

self-organisation. In: Decentralized A.I. (Y. Demazeau and J. P.

Muller, eds.), pp.175-196. North-Holland, Amsterdam.

[5] Haugeneder, H. and D. Steiner (1994). A multi-agent approach to

cooperation in urban traffic. In: Proc. of the Workshop of the Special

Interest Group on Cooperating Knowledge Based Systems, CKBS’93.

pp.83-99. DAKE Centre, Keele.

[6] Steiner, D., A. D. Burt, M. Kolb, C. Leri (1995). The conceptual

framework of MAI2L. In: Proc. of the 5th European Workshop on

Modelling Autonomous Agents in a Multi-agent World,

MAAMAW’93. LNAI 957, pp.217-230. Springer, Berlin.

[7] Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P. (2002) SUMO:

Simulation of Urban Mobility. In Proc. of the 4th Middle East

Symposium on Simulation and Modelling, MESM2002, SCS

European Publishing House, pp.183-187.

1188

