
Trajectory Representation Using Sequenced Linear
Dynamical Systems

Kevin R. Dixon and Pradeep K. Khosla
Electrical & Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Email: {krd, pkk}@cs.cmu.edu

Abstract— In this paper we present a novel approach for rep-
resenting trajectories using sequenced linear dynamical systems.
This method uses a closed-form least-squares procedure to fit a
single Linear Dynamical System (LDS) to a simple trajectory.
These LDS estimates form the elemental building blocks used
to describe complicated trajectories through an automatic seg-
mentation procedure that can represent complicated trajectories
with high accuracy. Each estimated LDS induces a control law,
mapping current state to desired state, that encodes the target
trajectory in a generative manner. We provide a proof of stability
of the control law and show how multiple trajectories can be
incorporated to improve the generalization ability of the system.

I. INTRODUCTION

One of the key issues in machine learning is feature
representation. When the objective is learning from human
demonstrations, then the central idea is the representation
of trajectories. Learning By Observation (LBO) systems ob-
serve users performing tasks and synthesize the information
to reproduce the task and achieve a goal, potentially in
previously unseen conditions. These systems must be able
to incorporate information from multiple demonstrations, in-
cluding those occurring in different environments. In this
paper we consider the representation of trajectories resulting
from user demonstrations. Trajectory representation for LBO
systems has somewhat different requirements than traditional
robotics, since these systems must be able to reproduce tasks
in previously unseen environments. In other words, LBO
systems must emulate “what the user would have done” in
these novel conditions. Consequently, it is essential that these
systems represent trajectories in a generative manner, a control
law mapping the current state of the system to the desired
state. To facilitate learning, the representation should reduce
the number of parameters needed to specify the trajectory,
and similar trajectories should have similar parameters. The
representation must be encoded so that it can be mapped
to different environments easily to incorporate trajectories
demonstrated in different environments. To address these re-
quirements, we propose a trajectory-representation approach
based on sequenced linear dynamical systems. A single Linear
Dynamical System (LDS) can represent a trajectory in an
extremely compact form by inducing a simple control law.
Due to its simplicity, a single LDS cannot faithfully reproduce
the complicated trajectories needed by many LBO systems.

However, we create sophisticated behavior from a collection
of simple components by segmenting complicated trajectories
into simple ones, with each segment represented by a single
LDS. Complicated trajectories can then be reproduced with
high accuracy using the LDS estimates in a sequential fashion.

From a high-level perspective, we first develop the concept
that a single LDS can represent a simple trajectory (Section II).
We use a closed-form least-squares procedure to estimate the
optimal LDS for that trajectory, in Equation 3. The control law
induced by the LDS is then used to reproduce the trajectory
(Section III). We call the endpoint of the trajectory an attractor
because the control law tends, or is attracted, to that point.
This generative representation is desirable since, for example,
modifying the initial conditions causes the LDS to adapt its
response to novel situations, as in Figure 1. Similarly, we can
modify the attractor to reproduce the trajectory in a different
part of the workspace. By combining multiple demonstrations
of a trajectory, we can produce a better generalization of “what
the user would have done” in a wider variety of situations.
Since the method is based on the least-squares principle,
it is straightforward to incorporate multiple demonstrations
into the estimated LDS, and we derive this formulation in
Section IV. Because the representation is based on a control
law, its stability is extremely important. In Section V, we show
that under reasonable conditions the control law will produce
bounded trajectories that terminate at the desired attractor
point. Specifically, we provide a proof sketch that an estimated
LDS is stable in the sense of Lyapunov.

To represent more complicated trajectories, we segment
these trajectories into a sequence of simple trajectories, where
each segment is represented by the single LDS building block.
In Section VI, we derive an online method for automatically
segmenting a complicated trajectory using a prediction-error
criterion. We demonstrate how the sequence of LDS esti-
mates reconstructs a complicated trajectory in Section VII.
The figures in this paper use two-dimensional examples for
illustrative purposes only; the ideas and the derivation of the
LDS estimates generalize to arbitrary dimension, as well as
state-variable derivatives such as velocity and acceleration.
Likewise, the proof of stability is independent of the observa-
tion dimension.

1

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA



Start

Start

Fig. 1. The left column shows two simple trajectories fitted by an LDS according to Equation 3. The dotted line represents the samples of the user trajectory
and the solid line represents the trajectory reconstructed by Equation 4. The middle column shows the response of the LDS to various initial conditions and
the right column shows the response of the LDS when the attractor is shifted.

II. SIMPLE TRAJECTORY WITH A KNOWN ATTRACTOR

POINT

Consider a trajectory sampled at discrete intervals, X =
{x0,x1, . . . ,xN}, where each observation is an (m × 1)
real vector and there are more samples than rows in an
observation, N ≥ m. Our approach attempts to find an LDS
that captures the “shape” of the trajectory and terminates at the
final observation. In other words, the control law induced by
the LDS should be stable and have its unique attractor point
at xN . A discrete-time LDS with constant input is given by
the difference equation

xn+1 = Axn +Bu.

Assuming the system is stable and the matrix (I−A)−1 exists,
then the unique attractor, x∞, is computed as

x∞ = (I −A)−1Bu.

Consequently, if we choose B = (I −A), then the input is
the point of attraction, x∞ = u. Using the LDS formulation,
we assume that the observations are generated according to

xn+1 = (I +R)xn −RxN
= R(xn − xN ) + xn. (1)

We give Equation 1 this particular form since if the matrix
(I + R) is stable, then the attractor of Equation 1 is xN ,
since B = (I−A). Given a trajectory, we rewrite Equation 1

as the column-stacked matrix equation

[x1 · · ·xN ] = R ([x0 · · ·xN−1]− [xN · · ·xN ])

+ [x0 · · ·xN−1] ,

⇒
X1:N

·
= R (X0:N−1−ΓN ) +X0:N−1. (2)

The least-squares solution for R is

R̂ = (X1:N −X0:N−1) (X0:N−1 − ΓN )
R
, (3)

where CR denotes the right pseudoinverse of C. If the matrix
C has full row rank, then CR = CT(CCT)−1. The matrix R̂
captures the salient features of the trajectory such as direction,
curvature, and speed of the trajectory. The attractor, xN ,
specifies the trajectory terminus.

III. REPRODUCING A SIMPLE TRAJECTORY

To reproduce the trajectory, the LDS is initialized with x̂0 ≡
x0, which induces from Equation 1 the autonomous control
law

x̂n+1 = R̂ (x̂n − xN ) + x̂n. (4)

This process repeats until reaching the stopping criterion,
‖x̂n − xN‖ ≤ τ , where τ > 0 is some scalar threshold.
Since the trajectory is reproduced using an autonomous control
law, it can be modified by shifting the initial conditions, the
attractor point, or both. There are no complicated scaling laws
that plague other trajectory-representation methods, such as

2

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA



Start

Start

Start

Start

Fig. 2. The left and middle columns show two examples of trajectories with a slight counter-clockwise curvature, with the original trajectories on top and
the response of the LDS on bottom. Individually, neither estimate produces the intended generalization. In the right column is the combined estimate of the
two trajectories, computed from Equation 5, which yields the desired slight counter-clockwise generalization.

spline interpolation [1]. Modifying either the initial conditions
or attractor will cause the estimated trajectory to stretch,
shrink, etc. Shifting the initial conditions and the attractor
by the same amount would cause Equation 4 to reproduce
a trajectory of the same shape, simply offset by the shift
amount. In Figure 1, we use Equation 3 to fit an LDS through
two trajectories and Equation 4 to reproduce the estimated
trajectories. We also show the response of the LDS to various
initial conditions and its response to a shifted attractor point.
The response to the different initial conditions corresponds to
the hypothesis of “what the user would have done” in that
situation.

When applied to the real-time control of a system, such
as a robot, then the deterministic iteration in Equation 4 then
becomes the desired state of the system. Like other researchers
[2], we assume that the system can observe its current state,
x̂n, and that there exists a low-level controller that is able to
actuate toward a desired state, x̂n+1. However, if the system
is nonholonomic or underactuated, then it may not be able
to achieve the desired state within the allotted time. At each
iteration of the control locus, the system senses its new state
and computes a new desired state. In this sense, Equation 4
computes the sequence of states specifying how to achieve a
goal even if the system diverges from the intended trajectory.

IV. COMBINING MULTIPLE TRAJECTORIES

Since our representation method uses a least-squares proce-
dure, it is simple to incorporate multiple examples of a trajec-

tory to create an estimate that generalizes better. Suppose we
have two demonstrations of a trajectory,X1 = {x1

0, . . . ,x
1
N1
}

and X2 = {x2
0, . . . ,x

2
N2
}, though in principle and in practice

the following method works with an arbitrary number of
demonstrations. We rewrite Equation 2 by column-stacking
both trajectories and define the matrices

X1,2
1:N ,

[
x1

1 · · ·x1
N1
x2

1 · · ·x2
N2

]
;

X1,2
0:N−1 ,

[
x1

0 · · ·x1
N1−1x

2
0 · · ·x2

N2−1

]
;

Γ1,2
N ,

[
x1
N1
· · ·x1

N1
x2
N2
· · ·x2

N2

]
.

Similar to Equation 3, the least-squares estimate for these
combined trajectories is

R̂
1,2

=
(
X1,2

1:N −X1,2
0:N−1

)(
X1,2

0:N−1 − Γ1,2
N

)R

. (5)

In Figure 2, we provide two examples of a simple trajectory,
both with a slight counter-clockwise curvature. The LDS
fitted to each individual trajectory is optimal in the least-
squares sense. Considering the response of these control laws
to various initial conditions, it is clear that the individual
estimates do not generalize to “slight counter-clockwise cur-
vature.” However, computing the least-squares estimate of the
combined trajectories produces the intended generalization.

V. STABILITY OF THE LDS ESTIMATE

Define the vector δn , xn − xN and the matrix

∆1:N , X1:N − ΓN

≡ [δ1 · · · δN ] .

3

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA



The matrix ∆0:N−1 is defined similarly. If the matrix ∆0:N−1

has full row rank, then we can rewrite Equation 3 as

R̂ = (X1:N −X0:N−1) (X0:N−1 − ΓN )
R

= ((X1:N − ΓN )− (X0:N−1 − ΓN )) (X0:N−1 − ΓN )
R

= (X1:N − ΓN ) (X0:N−1 − ΓN )
R− I

·
= ∆1:N∆0:N−1

R− I.

We note that the estimated LDS is

xn+1 = R̂ (xn − xN ) + xn

=
(
R̂+ I

)
xn − R̂xN

·
=

(
∆1:N∆0:N−1

R
)
xn − R̂xN .

There are two broad approaches to ensure the stability
of a discrete time-invariant dynamical system. The primary
method for linear systems is showing that the system matrix
is convergent, i.e., having eigenvalues inside the unit circle
[3]. The magnitude of the largest eigenvalue of a matrix A is
called the spectral radius and is written ρ(A). If the matrix
A is constant, then the eigenvalues can be evaluated directly
to ensure stability. When the system matrix is determined
algorithmically from inputs unknown a priori, then properties
of the spectral radius must be invoked. For instance, it is well
known that ρ(A) ≤ ‖A‖p, where ‖·‖p is any of the matrix
p-norms [4]. We note that the LDS estimate is computed from
the product of two matrices, ∆1:N∆0:N−1

R. There are recent
results indicating that bounding the eigenvalues of a product
of two matrices is, in general, undecidable [5]. Even with this
discouraging result, it is certainly possible to place restrictions
on the constituent matrices to bound the eigenvalues of the
product. Using this approach, we investigated a variety of
conditions to guarantee stability by restricting the class of
acceptable trajectories. Unfortunately, we were unsuccessful
in deriving any useful, reasonable, or meaningful conditions.
Our difficulty seems in line with anecdotal evidence from other
researchers [6].

The more general approach for ensuring stability of a linear
or nonlinear dynamical system is by Lyapunov’s direct (or
second) method [3]. In the DT LDS case, for stability in the
sense of Lyapunov (i.s.L.), it is sufficient to find a symmetric
positive definite (PD) matrix P̃ such that P̃ − ATP̃A =
Q̃, where Q̃ is some symmetric positive semidefinite (PSD)
matrix [3]. Since the eigenvalues of A and AT are the same,
stability i.s.L. can be determined equivalently by choosing a
symmetric PD matrix P such that

P −APAT = Q, (6)

where Q is some symmetric PSD matrix. This equation some-
times goes by the name of the Discrete Algebraic Lyapunov
Equation (DALE). Finding the matrix P is more of an art than
a science and typically relies on problem-specific intuition.
Applying this intuition sidesteps the undecidability problem
of bounding the eigenvalues of a product of arbitrary matrices
mentioned earlier.

(a) (b)

Fig. 3. Trajectory of the cursive word “hello” with attractors extracted
automatically using Equation 7 (Figure 3(a)). The green curve indicates the
estimated trajectory from Equation 4 (Figure 3(b)).

Theorem 1: Equation 4 is stable i.s.L. about the attractor
xN if the matrix ∆0:N−1 has full row rank.
Proof sketch: We evaluate the DALE, Equation 6, with P =
∆0:N−1∆0:N−1

T. After some intricate algebra, the DALE then
evaluates to

Q = δ0δ0
T + ∆1:N

(
m∑

i=1

vivi
T

)
∆1:N

T,

where vi is the ith column of the matrix V resulting from the
singular value decomposition of ∆0:N−1. Clearly the matrix
Q is symmetric PSD and, consequently, Equation 4 is stable
i.s.L. about the attractor xN .

The assumptions of Theorem 1 imply that if the trajectory is
anything other than a perfect line, then Equation 3 will produce
bounded trajectories that terminate at the desired attractor.
However, as observations become increasingly collinear there
could be numerical-precision problems, causing the matrix
∆0:N−1 to become effectively rank deficient. This is typically
manifested by the estimated matrix R̂ becoming poorly con-
ditioned, and can be determined by checking if the condition
number exceeds some threshold, κ(R̂) > κmax. A poorly
conditioned matrix is then replaced by a scaled identity matrix.
Since every vector is an eigenvector of a scaled identity matrix,
Equation 4 will then induce a control law that produces straight
lines terminating at the attractor from any initial condition.

VI. COMPLICATED TRAJECTORIES WITH UNKNOWN

ATTRACTOR POINTS

In this section, we consider trajectories that cannot be faith-
fully reproduced using a single LDS estimate. We formulate
the problem as finding a sequence of LDS estimates that
represents the complicated trajectory. Furthermore, we assume
that there are no auxiliary signals indicating an appropriate
segmentation. Somewhat arbitrarily, we pursued a method that
allows the system to perform the segmentation online, as
observations become available, instead of a batch-processing
method that requires the trajectory be complete. It appears that
finding the optimal segmentation of a trajectory has no closed-
form solution and is heuristic in nature, similar to determining
the optimal number of clusters in the k-means algorithm.
Our segmentation heuristic is based on the predictability of

4

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA



(a) (b)

Fig. 4. Representation of the cursive word “hello” from different values
of the prediction-error threshold. The segmentation with εmax = 0.4 in
Figure 4(a) uses 22 matrix-attractor pairs. The segmentation with εmax = 0.8
in Figure 4(b) uses 12 matrix-attractor pairs.

subsequences of the trajectory, where its observations can be
modeled by a single LDS. At an unknown point in time, Ni,
the trajectory is no longer well represented by the LDS that
generated recent observations. To determine this segmentation,
at each time step we compute a prediction of the next observa-
tion in the trajectory. If the prediction is sufficiently accurate,
then we consider the current LDS estimate appropriate. If the
prediction is inaccurate, then a new LDS should be used.
Specifically, at time n we estimate an LDS according to
Equation 3 between time Ni−1 and time n− 1 and write this
matrix as R̂Ni−1:n−1. We assign xn as the attractor of the LDS
and predict the previous observation,

x̂n−1 = R̂Ni−1:n−1 (xn−2 − xn) + xn−2.

We compute prediction error as

εn , ‖xn−1 − x̂n−1‖
‖xn−1 − xn−2‖

. (7)

This definition attempts to normalize the error so that its value
is independent of the speed or sampling rate of the trajectory.
For instance, if the user moves very quickly, then we expect
predictions to be less accurate on an absolute scale. On the
other hand, when a trajectory is sampled at a relatively high
rate, we expect predictions to be more accurate on an absolute
scale, since not much time has elapsed between observations.
Normalizing by the distance between observations accounts for
this discrepancy, so that an inaccurate prediction is somewhat
invariant with respect to these issues. If the prediction error
exceeds a predetermined threshold, εn > εmax, then this
implies that the observation xn is not an appropriate attractor
for this segment. Therefore, we assign the segmentation time
as Ni = n − 1 and the attractor as xNi = xn−1. We then
segment the trajectory between time Ni−1 and time Ni and
compute the corresponding LDS as in Equation 3,

R̂Ni =
(
XNi−1+1:Ni −XNi−1:Ni−1

) (
XNi−1:Ni−1 − ΓNi

)R
.

After the entire trajectory has been segmented, a sequence
of M LDS estimates, {(R̂N1

,xN1
), . . . , (R̂NM ,xNM )}, now

describes the complicated trajectory. In most cases this se-
quence of matrix-attractor pairs will reduce the number of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Su
bg

oa
ls

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Prediction−error threshold

A
vg

 T
ra

je
ct

or
y 

E
rr

or

Fig. 5. Trade-off between simplicity and accuracy: number of matrix-attractor
pairs and average error as a function of prediction-error threshold εmax.

parameters needed to represent the trajectory. Let N be the
number of (m × 1) observations in the original trajectory.
The number of parameters used to specify the trajectory is
then Nm. With the sequenced LDS method the number of
parameters needed to specify the approximated trajectory is
M(m2 + m), where M is the number of LDS estimates,
since m2 numbers are needed for the matrix R̂Ni and m
for the attractor xNi . In Figure 3, we apply the segmentation
algorithm to the trajectory of the cursive word “hello.” The
original trajectory is specified by 350 numbers. The LDS
representation used 12 matrix-attractor pairs, or 72 numbers,
a reduction of almost 80%. However, the reduced-parameter
representation results in an error between the original and
estimated trajectories. Like many algorithms, there is a tradeoff
between the expressiveness of the system and the number
of parameters used. In Figure 4, we segment the cursive
word “hello” with high and low values of the prediction-
error threshold, εmax. Qualitatively, the estimated trajectory
in Figure 4(b) is less faithful to the original trajectory than
the estimate in Figure 4(a), which uses nearly twice as many
matrix-attractor pairs.

To quantify this trade-off between simplicity and accuracy,
we compute the error between the original and estimated
trajectories. The error is defined to be the norm between an
observation in the original trajectory and the closest point
in the estimated trajectory. In Figure 5, we plot the result-
ing average error and number of matrix-attractor pairs as a
function of the prediction-error threshold, εmax. The curves
show the anticipated result: as the number of parameters
decreases, the average error generally increases. The optimal
value for the prediction-error threshold is task dependent:
some tasks require high accuracy, while others favor a simpler
representation. As such, the correct value of εmax depends on
the task at hand.

VII. REPRODUCING A COMPLICATED TRAJECTORY

To reproduce a complicated trajectory, given a sequence
of matrix-attractor pairs, we simply initialize the difference
equation with x̂0 = x0 and repeatedly apply

x̂n+1 = R̂N1
(x̂n − xN1

) + x̂n,

5

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA



until achieving ‖x̂n − xN1
‖ ≤ τ . At this point, the next

matrix-attractor pair is used (R̂N2
,xN2

), and so forth, until
the final attractor point is reached, cf. Figure 3(b). Since each
LDS estimate is stable i.s.L., any trajectories generated by
the difference equations will be bounded and terminate at
the final attractor point in finite time. Finite termination is
guaranteed regardless of initial conditions or deviations from
the prescribed control law.

VIII. RELATED WORK

The trajectory-representation method presented in this paper
forms the substrate for the mobile-robot LBO system described
by Dixon and Khosla [7]. The LBO system uses the sequenced
LDS representation to describe the trajectory of a user demon-
strating a task, sensed from a scanning laser range finder. The
attractors extracted from the trajectory are associated with
objects in the environment and, as these objects move, the
attractors move accordingly. The control law from the LDS
representation interpolates the trajectory with the modified
attractor. This endows the LBO system with the ability to learn
from, and perform, demonstrations in different environments.

According to Ijspeert et al. [8], “there seems to be consensus
that among the most important desirable properties of move-
ment encoding are: 1) the ease of representing and learning
a goal trajectory, 2) compactness of the representation, 3)
robustness against perturbations and changes in a dynamic
environment, 4) ease of re-use for related tasks and easy
modification for new tasks, and 5) ease of categorization
for movement recognition.” To varying degrees, these criteria
are applicable to the class of systems that we consider. We
would also recommend the ability to incorporate multiple
examples of a trajectory in order to capture the intentions of
the user better. The most obvious method for representing a
trajectory, cubic spline interpolation [1], is extremely sensitive
to changes in initial conditions and is difficult to recompute
for different operating conditions. A similar method for rep-
resenting the trajectories of mobile robots using piecewise-
cubic Bézier curves has also been proposed [9]. As Schaal
et al. [2] note, spline methods “are not very robust in coping
with unforeseen perturbations of the movement” and require
“more complex computations in terms of scaling laws.” This
observation underscores the need to represent trajectories in
a generative manner. Other trajectory-representation methods
include symbolic if-then coding [10], neural networks [11],
and optimization methods [12]. Ijspeert et al. [8] describe a
trajectory-representation method based on nonlinear attractor
dynamics. This approach is particularly appealing since it
is a generative method, providing a control law so that a
system can reproduce trajectories in different environment
configurations by adjusting the attractor points. This method
also allows the representation of a wide variety of trajectories,
including discrete and rhythmic movements. However, this
formulation is sensitive to the speed with which trajectories are
demonstrated, which may be undesirable in some applications.
Also, entire trajectories are encoded with a single attractor and
it may be difficult to modify portions of a trajectory without

complete retraining. Estimating the parameters of a linear,
time-invariant dynamical system is squarely within the domain
of System Identification [13]. However, this field is primarily
concerned with experimental setup and unbiasedness, less with
stability and compactness. In some sense, we have co-opted
an elementary concept from system identification and are
applying the ideas to trajectory representation.

IX. CONCLUSIONS

In this paper, we presented a novel method for representing
trajectories using sequenced linear dynamical systems. Simple
trajectories are represented by a single LDS estimate while
complicated trajectories use the sequenced representation. The
LDS estimates are computed in closed form by a least-squares
procedure. We showed that multiple demonstrations can be
combined in order to improve generalization and provided a
proof sketch guaranteeing stability of the LDS estimates.

ACKNOWLEDGMENT

We would like to thank Bruce Krogh and John Dolan
for very helpful discussion. We are grateful to the Intel
Corporation for providing the computing hardware. This work
was sponsored by ABB Corporate Research.

REFERENCES

[1] J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed.
Addison Wesley, 1989.

[2] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transaction of the Royal
Society of London: Series B, Bilogical Sciences, vol. 358, pp. 537–547,
2003.

[3] P. J. Antsaklis and A. N. Michel, Linear Systems. McGraw-Hill, 1997.
[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns

Hopkins University Press, 1996.
[5] V. D. Blondel and J. N. Tsitsiklis, “The boundedness of all products of

a pair of matrices is undecidable,” Systems and Control Letters, vol. 41,
2000.

[6] V. D. Blondel, J. Theys, and A. A. Vladimirov, “An elementary
counterexample to the finiteness conjecture,” SIAM Journal on Matrix
Analysis, vol. 24, no. 4, 2003.

[7] K. R. Dixon and P. K. Khosla, “Learning by observation with mobile
robots: A computational approach,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 2004.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2001.

[9] J.-H. Hwang, R. C. Arkin, and D.-S. Kwon, “Mobile robots at your
fingertip: Bezier curve on-line trajectory generation for supervisory
control,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2003.

[10] M. N. Nicolescu, “A framework for learning from demonstration,
generalization and practice in human-robot domains,” Ph.D. dissertation,
Department of Computer Science, University of Southern California,
2003.

[11] H. Friedrich, S. Münch, R. Dillmann, S. Bocionek, and M. Sassin,
“Robot programming by demonstration (RPD): Supporting the induction
by human interaction,” Machine Learning, vol. 23, pp. 163–189, 1996.

[12] S. Schaal, “Learning from demonstration,” in Advances in Neural
Information Processing Systems, M. Mozer, M. Jordan, and T. Petsche,
Eds., vol. 9, 1997, pp. 1040–1046.

[13] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice
Hall, 1999.

6

To appear in Proceedings of the IEEE International Conference on Robotics and Automation
April 26 - May 1, 2004, New Orleans, Louisiana USA


