
Recovering the Basic Structure of Human Activities
from a Video-Based Symbol String

Kris M. Kitani, Yoichi Sato
The University of Tokyo

Institute of Industrial Science
Tokyo 158-8505, Japan

{kitani, ysato}@iis.u-tokyo.ac.jp

Akihiro Sugimoto

National Institute of Informatics
Tokyo 101-8430, Japan

sugimoto@nii.ac.jp

Abstract

In recent years stochastic context-free grammars have
been shown to be effective in modeling human activities be-
cause of the hierarchical structures they represent. How-
ever, most of the research in this area has yet to address the
issue of learning the activity grammars from a noisy input
source, namely, video. In this paper, we present a frame-
work for identifying noise and recovering the basic activity
grammar from a noisy symbol string produced by video. We
identify the noise symbols by finding the set of non-noise
symbols that optimally compresses the training data, where
the optimality of compression is measured using an MDL
criterion. We show the robustness of our system to noise
and its effectiveness in learning the basic structure of hu-
man activity, through an experiment with real video from a
local convenience store.

1 Introduction

The Stochastic Context-Free Grammar (SCFG) is a
model that has been widely utilized for natural language
processing and in recent years, has also been shown to be
effective in modeling human activities extracted from video
([2], [10], [5], [4], [7]). The success of SCFGs in analyz-
ing natural languages is largely due to its ability to repre-
sent the hierarchical structure found among words in a sen-
tence. According to perceptual psychology [11], this hi-
erarchical structure is also characteristic of the primitive
actions of a human activity 1 and like sentences, activi-
ties are perceived to have partonomic structure (a discrete
temporal sequence of primitive actions). This similarity
between strings of words and a series of actions gives us
the rational basis for the use of an SCFG for activity anal-
ysis. Other non-hierarchical finite-state machines (finite-
state automata, hidden Markov models, n-grams, etc.) have

1We use the term activity based on terminology introduced in [1] in-
stead of the term event in [11] to refer to the high-level description of a
temporal sequence of primitive actions.

been used for human activity recognition but are limited by
the fact that they cannot explicitly describe the hierarchical
structure of human activities.

One important task involved in using an SCFG for ac-
tivity analysis is the task of learning the grammar. Most of
the previous works however, have hand-crafted their own
grammars and have avoided the issue of grammar learning.
Ivanov [2] extracted primitive action words from a video
sequence of a conductors arm using HMMs and was able
to recognize the rhythmic meter using an SCFG. The gram-
mar and it’s probabilities however, were defined by Ivanov.
Moore[5] used an SCFG to recognize people playing Black
Jack and used the a prior information encoded in the gram-
mar to deal with errors in the string of action words. Again,
the grammar was defined by the author based on the basic
rules of the game. In the same vein, Minnen [4] leveraged
the a prior knowledge of a predefined grammar to infer an
action even when the agent under analysis is occluded in the
scene.

In contrast to works that used manually defined gram-
mars, research dealing with the issue of automated learning
has been minimal and assumes a pure data set for learning.
Wang [10] used an experimental scenario similar to Ivanov
and implemented HMMs to produce primitive action sym-
bols from a video segment of a conductors hand motions.
The primitive actions produced by the HMMs were then
fed into a pre-existing CFG learning algorithm COMPRES-
SIVE [6] to learn the activity grammar. Due to the fact that
COMPRESSIVE requires positive examples to generate the
CFG, it can be shown that their system is very sensitive to
errors in the input symbol string. That is, an unstable detec-
tion would have a very adverse affect on the learning pro-
cess because the noise would be included into the learned
grammar. While a noise-less input stream may be a rea-
sonable assumption when learning a grammar from a string
of words, it is a naive assumption when learning an activ-
ity grammar from a symbol string produced by stochastic
detectors on a noisy video signal created by human actors.

In summary, most of the works using CFGs for activity
analysis have used grammars manually designed by knowl-



edge engineers while research focused on automated gram-
mar learning has only used pre-exiting algorithms, assum-
ing activities to be a noise-less stream of symbols. In con-
trast to previous works, we propose a new grammar learn-
ing method that deals with the issue of noise. Our method
places an assumption of noise on different combinations of
terminal symbols and tests that assumption using the mini-
mum description length (MDL) principle. Then, using the
results of the MDL evaluation, our method finds a class of
the best set of terminal symbols that yields the most com-
pact and descriptive activity grammars.

2 Conceptual example

We begin the explanation of our method with a concep-
tual example to show the basic concepts underlying our ap-
proach. Given a symbol string S, we would like to find the
most compact grammar that yields a detailed description of
the symbol string. At first glance, no regularity is observed
in the string:

S→ a x b y c a b x c y a b c x.

Since we are assuming the presence of noise, we randomly
remove all y symbols from the stream making the presuppo-
sition that they are noise symbols 2. This assumption allows
us to shrink the string into its new form:

S→ a x b c a b x c a b c x.

It is observed that the substring c a b occurs twice in the
string but we still have not found a regularity (some rule)
that completely describes the symbol string. So we proceed
by making another arbitrary presupposition that x is also a
noise symbol, resulting in the string:

S→ a b c a b c a b c.

Now it is clear that the substring a b c is repeated three
times in the symbol string and so, we create a new rule A
and encode the symbol string S with the new rule, yielding
the compact description:

S→ A A A
A→ a b c.

What we have observed through this example is that, when
x and y were assumed a priori to be noise, we were able to
obtain a compact grammar (A→ a b c) and a determinis-
tic description of the basic structure of the original symbol
string S→ A A A. Thus we reason that it is highly proba-
ble that x and y are in fact noise symbols.

2Here we delete the symbol for illustrative purposes. We do not actually
delete symbols in our method.

3 Proposed method

It is necessary to first understand the focus of our pro-
posed approach before we proceed to explain its details.
In general, learning an activity grammar consists of two
parts: (1) low-level image processing to extract the prim-
itive symbols and (2) high-level syntactic analysis to learn
the grammar from the primitive symbol string. The primary
focus of our approach is on high-level grammar learning
and therefore we provisionally set aside the equally impor-
tant topic of low-level image processing. That is, we make
the assumption that we already have a relatively reliable
(but noisy) low-level image processing system to produce
the primitive symbol string.

In this section we formalize the key concepts introduced
through the example in section 2 and explain how we per-
form high-level grammar learning. We begin by defining
the characteristics of noise symbols and then proceed to ex-
plain how our proposed method is able to discover basic ac-
tivity structures from noisy video data using the MDL prin-
ciple.

3.1 Definition of noise

When considering the task of learning an activity from a
string of action symbols, it is reasonable to expect different
types of noise that hide the basic structure of the activity
that we want to learn. First there is system noise caused
by the instability of the image processing system. System
noise can be attributed to changes in appearance that cause
the image processing system to insert, substitute or delete
(miss) certain symbols from the symbol string. Symbols
that are often inserted, substituted or deleted should not be
used for learning because they introduce much randomness
to the symbol string. The second type of noise is inherent
to human activities which we call inherent noise. Inherent
noise is caused by superfluous actions that do not play an
important role in defining the activity to be learned. These
secondary action symbols tend to appear with irregular fre-
quency and order, and fill in the gaps between the important
action symbols.

Since it is a very challenging task to address all the dif-
ferent modes of noise, we make several key assumptions
to narrow our focus upon a more manageable sub-problem,
namely, insertion noise in the training data. First, we make
the assertion that a symbols is either a (1) noise symbol or a
(2) non-noise symbol. Second, we define a non-noise sym-
bol to be a primary action symbol that defines the target ac-
tivity. As for its properties, it shows regularity in its appear-
ance and is observed with constant frequency and ordering.
Noise symbols on the other hand are secondary action sym-
bols that display random behavior with respect to frequency
and ordering. Our assumptions are summarized as follows:



1. Noise symbols exist in the symbol string,
2. Non-noise symbols exist in the symbol string,
3. Noise and non-noise symbols are mutually exclusive,
4. Non-noise symbols occur with regularity.

3.2 Setting up the presuppositions

Given a set of noisy training data (strings of primitive
action symbols from video), we need a means of identify-
ing the noise symbols to ensure that we use only non-noise
symbols to recover an activity grammar. In order to identify
the noise symbols, various presuppositions are set against
the primitive symbols and those presuppositions are later
evaluated using an MDL criterion. Here we explain how
the initial presuppositions are set up.

Since we do not know a priori which symbols are noise,
we need to evaluate every possible presupposition against
each type of primitive symbol. For example, if there are
two types of primitive symbols x and y, the following four
presuppositions are possible: {∅}, {x}, {y}, {x, y} (None
of the primitive symbols are noise, x is noise, y is noise or
x and y are noise, respectively).

For a given presupposition made on the primitive sym-
bols, an initial grammar is constructed to reflect that presup-
position. First we create a set of production rules Ni → w+

i

for each presupposed non-noise symbol, where w+
i is a non-

noise terminal symbol and Ni is a newly created nontermi-
nal. These preterminal rules effectively preserve the unique
identity of the symbol in the training data. Second, we cre-
ate a set of generic preterminal production rules for presup-
posed noise symbols in the form ∗ → w−

i , where w−
i is a

noise terminal symbol and the nonterminal ∗ is a generic
nonterminal representing all noise symbols. The generic
absorption rule ∗ → ∗ ∗ is also created, which has the ef-
fect of absorbing a series of adjacent noise symbols. Third,
we create a new rule that contains the whole input symbol
string W′ encoded by the presupposition. An example of
setting up a presupposition is given in figure 1.

To attain the encoded input symbol string W′ we be-
gin with the plain input symbol string W = {W1 . . . Wj},
which is a series of concatenated activity sequences, where
each sequence Wi is a string of primitive symbols headed
by a start marker εiw1 . . . wk. We encode the plain input
string to reflect the presuppositions made about the sym-
bols by replacing each terminal symbol w with the appro-
priate nonterminal symbol, using the preterminal produc-
tions rules created earlier. After all of the new rules have
been inserted into the grammar, we obtain the set of initial
rules R0.

R0 =

⎧⎪⎪⎨
⎪⎪⎩

S → W′, ∗ → ∗∗,
N1 → w+

1 , ∗ → w−
1 ,

· · · · · ·
Nu → w+

u , ∗ → w−
v

⎫⎪⎪⎬
⎪⎪⎭

.

Input strings:
W1 = 1cabaab
W2 = 2abacab
W3 = 3abaabc

Presupposition:
c is noise.

Initial grammar:
S → 1 ∗ ABAAB2ABA ∗ AB3ABAAB∗
A → a
B → b
∗ → c
∗ → ∗ ∗

Figure 1. Setting up a presupposition.

3.3 Learning the hypothetical grammar

Now that we have effectively encoded the presupposi-
tions on the primitive action symbols into the initial gram-
mar, we proceed to learn the hypothetical grammar. The
heuristic CFG learning algorithm COMPRESSIVE is im-
plemented here to learn the grammar and the occurrence
counts for new rules are stored while the algorithm is run-
ning. COMPRESSIVE uses a formula that quantifies the
change in description length ΔDL to find the best N-gram
in the grammar that minimizes the overall size of the gram-
mar. For a N-gram ν with length m and occurrence n, the
compression function is given as:

max
ν

ΔDL = m · n − (m + 1) − n. (1)

In words, the change in description length is equivalent to
the decrease caused by the removal of ν (n occurrences of
length m), minus the increase of inserting a new rule m +
1, minus the increase of inserting of the new nonterminal
symbol n times.

Once the best ν has been found and replaced by the new
nonterminal, the algorithm reprocesses the grammar until
there are no more N-grams can be found that decrease the
size of the grammar. During the iterative process, the occur-
rence counts for the best N-grams are stored and are used
later to calculate the rule probabilities.

Upon completion of COMPRESSIVE, the grammar is
post-processed. Recall that the original segmented input
symbol string W was encoded by the presuppositions to
acquire W′. Now after the completion of the COMPRES-
SIVE algorithm, the input string has been encoded yet again
to produce W′′. In the post-processing step, we group seg-
ments in W′′ that have the same structure. To do this, we
first remove the S rule, S → W ′′

1 · · ·W ′′
m, from the gram-

mar. Next, we separate each sequence and create a new S
rule for each sequence: S → W ′′

1 , · · · , S → W ′′
m. These



new rules are then inserted back into the grammar, where
multiple occurrences of the same encoded sequence are in-
serted only once, whereas counts are continually updated.
The production rule probabilities are calculated with the fol-
low equation:

P (A → λ∗
i ) =

c(A → λ∗
i )∑

j c(A → λ∗
j )

, (2)

such that A is a nonterminal and λ∗ is the right-hand side of
the rule. Rules with zero probability are removed from the
grammar.

This completes the step for learning the hypothetical
grammar based on the initial presuppositions. The next sec-
tion explains the framework to evaluate the quality of the
learned grammar.

3.4 Testing using the MDL principle

We want to find a presupposition on the primitive action
symbols that gives us a compact grammar and a detailed
description of the input symbol string. Reworded in the
framework of MDL, we are looking for a selection of non-
noise symbols that will give us a grammar G that minimizes
the sum of the description length of the grammar DL(G)
and the description length of the data W encoded by the
grammar (data likelihood) DL(W|G).

arg min
G

{− log P (G) − log P (W|G)}. (3)

In this section, we use the encoding technique proposed in
[9] to find the description length of the grammar and we use
inside probabilities to calculate the description length of the
data likelihood.

3.4.1 Description length of the grammar

The first term of the MDL equation is the description length
of the grammar DL(G). DL(G) is a measure of the com-
pactness of the grammar and is an indicator of the regularity
found in the training data.

Since the probability of the grammar can be interpreted
as the joint probability of the parameters θG and structure
GS of the grammar,

P (G) = P (GS , θG) = P (θG|GS)P (GS), (4)

the description length of the grammar can be acquired by
summing the description length of the grammar parame-
ters DL(θG|GS) and the description length of the grammar
structure DL(GS). We solve for DL(θG|GS) using the pa-
rameter probability P (θG|GS) and find DL(GS) directly
from the grammar.

First, the grammar parameter probability P (θG|GS) is
calculated as the product of Dirichlet distributions (equa-
tion 5), such that each Dirichlet distribution represents an
equally distributed probability across all n possible produc-
tions of a nonterminal symbol N .

PN (θG|GS) =
1

B(α1, . . . , αn)

n∏
i=1

θαi−1
i , (5)

where parameters for each nonterminal is represented by the
multinomial distribution θ = (θ1, . . . , θn) and B is a beta
distribution. Each rule has an equality distributed probabil-
ity θi and the equality distributed prior weights αi conform
to the conditions

∑n
i=1 αi = 1 and αi < 1. The descrip-

tion length of the parameters of the grammar is given by
− log P (θG|GS).

Second, the structure probability P (GS) is calculated by
directly computing the description length of the structure
DL(GS). DL(GS) can be defined as the sum of two parts:
the length of the production rule code(k) and (2) the sym-
bols of the production rule code(s). code(k) is computed
from equation (6) on the assumption that the length of the
production rule is drawn from a Poisson distribution (we
use η = 3) shifted by one since the smallest possible rule is
of length two.

− log p(k − 1; η) = − log
e−ηηk−1

(k − 1)!
. (6)

Assuming all symbols have the same occurrence prob-
ability, we need log2 |Σ| bits per symbol, such that Σ is
the set of all symbols. Therefore, code(s) of a rule with k
symbols requires k log |Σ| bits to describe. The description
length of the structure is given by:

DL(GS) =
∑
R∈R

(− log p(k − 1; η) + k log |Σ|) . (7)

3.4.2 Description length of the likelihood

It is not enough to evaluate the description length of the
grammar because a grammar chosen purely based on gram-
mar size will favor a very small grammar which may not ex-
plain the data well. The second term in the MDL equation
is the description length of the data likelihood DL(W|G).
DL(W|G) works to balance the effect of the first term by
quantifying the expressive power of the grammar.

In our method, we first calculate the data likelihood and
then convert it into a description length. That is, we use a
chart of inside probabilities to calculate the likelihood using
the initialization equation (8, 9) and the recursive equation
(10), where N is a nonterminal, i is the start index, j is the
length and k is the abstraction level of E. The summation
term is the sum of inside probabilities for every permutation



Figure 2. Overhead view of the CCD camera
mounted above the counter.

of {j1, . . . , jm} that sums to j. ki is two when the symbol
is a preterminal symbol and one otherwise.

β(T, i, 1, 1) = 1.0 (8)

β(N, i, 1, 2) = P (N → T ) · β(T, i, 1, 1) (9)

β(N, i, j, k) = P (N → N1 · · ·Nm) ·∑
mPm

β(N1, i1, j1, k1) + · · ·

+β(Nm, im, jm, km) (10)

The likelihood for one sequence Wi is calculated from
equation (11), as the sum of all S inside probabilities that
start at index one. The total likelihood for all the sequences
W is computed by equation (12). After the total likelihood
has been computed, it is converted into a description length
by taking the minus logarithm.

P (Wi|G) =
2∑

k=1

β(S, 1, jmax, k), (11)

P (W|G) =
n∏

i=1

P (Wi|G). (12)

In summary, by calculating the description length of the
grammar and the description length of the data likelihood,
we have evaluated the quality of the presuppositions made
on the terminal symbols.

4 Experimental results

We implemented a surveillance system in a local conve-
nience store to test our method on real data. The system

Table 1. Definition of the terminal symbols.

NO. TERMINAL SYMBOL DESCRIPTION
1 CUS AddedMoney Money found in tray after cus-

tomer comes in contact with the
tray

2 CUS MovedTray Customer moves tray
3 CUS RemovedMoney Customer removes money from

tray
4 EMP HandReturns Employee hand returns after

long absence
5 EMP Interaction Employee interacts with cus-

tomer
6 EMP MovedTray Employee moves the tray
7 EMP RemovedMoney Employee moves money from

tray
8 EMP ReturnedScanner Employee returns scanner
9 EMP TookReceipt Employee takes the receipt

from the register
10 EMP TookScanner Employee picks up scanner

consisted of a single overhead CCD camera (images shown
in figure 2) that captured the hand movements of the em-
ployee and the customer. In our experiment a total of 9700
plus frames were recorded and processed offline according
to our proposed method. Since our main goal was to learn
the high-level grammar (not video segmentation) for a typ-
ical employee-customer transaction, the video was manu-
ally segmented for each new customer. While we did not
address the issue of segmentation in this paper, finding the
beginning and ends (punctuations) of an activity will be an
important task to address in future works when using a syn-
tactic approach to learning.

To produce the training data (action symbol string), a
low-level image processing unit was designed to detect var-
ious objects (hands, tray, money, etc.) and output ten dif-
ferent types of terminal symbols based on a set of heuristic
rules. An explanation of the terminals is given in table 1.
Although we implemented a simple rule-based image pro-
cessing system to create the primitive action symbols, our
method will work with any low-level image processing sys-
tem, as long as it is able to produce a string of primitive
actions symbols. As for our system, a total of 369 sym-
bols (not including the start markers ε) were automatically
produced from the convenience store video. The longest
symbol sequence was eleven symbols long and the short-
est sequence was three symbols long. Each sequence was
concatenated into one long symbol string as an input to our
algorithm.

After acquiring the training data, we evaluated each pre-
supposition for every possible subset of primitive symbols
as outlined in 3.2. Since there were ten different terminals
symbols, our system evaluated 1024 possible grammars.
While our method has the advantage of covering the en-



tire solution space, evaluating every possible combination
leads to a combinatorial explosion as the number of termi-
nal symbols increase. Although we took a brute force ap-
proach and evaluated every combination in this experiment,
our results suggest that it is possible to optimize the search
by first evaluating grammars that use many non-noise sym-
bols and limit subsequent evaluations to symbol subsets that
are contained only in the top scoring set(s).

We present the results of our approach from two differ-
ent perspectives. First from a practical perspective, it is use-
ful to present a list of the top candidate grammars with re-
spect to the number of terminals symbols that were used as
non-noise symbols (table 2). For example, one user may be
satisfied by a compact grammar that identifies two or three
non-noise symbols, while another user may seek a more
descriptive grammar using ten or more non-noise symbols.
The user should be able to choose the best grammar based
on the number of non-noise symbols utilized.

Second, from the perspective of evaluation, it may be
necessary to identify one best grammar. In general the sys-
tem will favor grammars that use fewer non-noise symbols
because they have shorter description lengths. To promote
more equality among the grammars, we divide the total de-
scription length by the number of terminal symbols used as
non-noise symbols in the grammar. This results in a more
balanced evaluation that gives more priority to grammars
that use more non-noise symbols. This is a method used in
sentence compression and speech recognition [3]. A graph
of the normalized scores of the top six grammars are given
in figure 3. Notice how the U-shaped plot reveals that the
grammar using six symbols has the smallest (best) adjusted
score.

5 Balancing description lengths

As alluded to in the previous section, the MDL crite-
ria displays a bias toward smaller grammars. To be precise,
the formulation of the description length of the grammar as-
signs values on a range greater than the range of the descrip-
tion length of the data likelihood, which causes the grammar
size to have more influence on the total description length.
This phenomenon was observed in tests with artificial data
and was also found to be true in our experiments with real
data (figure 4).

This imbalance between description lengths causes
grammars that use rare symbols (smaller grammar) to be
given better total scores while grammars that use frequently
occurring symbols (bigger grammar) are given bad total
scores. We see this principle at work in our results. For
example, the terminal CUS MovedTray was only detected
once in two out of 55 data sequences but it is included in the
top candidate grammar that uses three symbols (see table 2).
Intuition tells us that rules should not be made from symbols

Table 2. Top candidate grammars (Biased).

No. Non-noise Symbols DL(G) DL(W|G) DL(G|W)
1 EMP TookScanner 221.41 1194.29 1415.7

2
CUS RemovedMoney
EMP TookScanner 245.339 1191.28 1436.619

3
CUS MovedTray
CUS RemovedMoney
EMP TookScanner 294.193 1187.16 1481.353

4

CUS MovedTray
CUS RemovedMoney
EMP TookReceipt
EMP TookScanner 493.4 1054.2 1547.6

5

CUS MovedTray
CUS RemovedMoney
EMP MovedTray
EMP TookReceipt
EMP TookScanner 658.548 1011.17 1669.718

6

CUS MovedTray
CUS RemovedMoney
EMP MovedTray
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 1100.3 818.556 1918.856

7

CUS MovedTray
CUS RemovedMoney
EMP HandReturns
EMP MovedTray
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 1557.83 713.169 2270.999

8

CUS AddedMoney
CUS MovedTray
CUS RemovedMoney
EMP HandReturns
EMP MovedTray
EMP RemovedMoney
EMP ReturnedScanner
EMP TookScanner 2040.8 545.225 2586.025

that occur only once or twice in the training data. This intu-
ition is actually represented by the description length of the
data likelihood but as we stated before it is overpowered by
the description length of the grammar.

We can balance the effect of the description length of the
grammar and the description length of the data likelihood
by introducing a factor α into the MDL equation, where α
has been interpreted to be the prior weight of the grammar
or the inverse of the data multiplier [9], or the representa-
tiveness of the data [8].

DL(G|W) = αDL(G) + DL(W|G). (13)

We set a value for α as the ratio between the range of the
description of the grammar and the description of the likeli-
hood. This has the effect of minimizing the contribution of
the description length of the grammar and boosts the contri-
bution of the description length of the data likelihood, giv-
ing lower priority to grammars that use rare symbols.

The top candidate grammars relative to the number of
non-noise symbols used is given in table 3. Notice now
that terminal symbols with consistent occurrence are se-
lected first. The grammar with the smallest overall de-
scription length is the candidate grammar that uses the
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Figure 3. Normalized description lengths for
top six candidate grammars.
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description lengths.

three symbols EMP ReturnedScanner, EMP TookReceipt
and EMP TookScanner with a description length of 1141
bits. The grammar learned with these three symbols is given
in table 4.

The hierarchical structure (parse tree) learned for a com-
mon activity H is given in figure 5. The parse tree depicts
the activity of an employee who first begins (node E) the
transaction by taking the scanner to enter the barcodes of
items for purchase into the register. Then, the employee
ends (node D) the transaction, by returning the scanner to
its holder and issuing the receipt.

Table 3. Top candidate grammars (Balanced).

No. Non-noise Symbols α αDL(G)+DL(W|G)
1 EMP TookScanner 0.383 1279.0016

2
EMP ReturnedScanner
EMP TookScanner 0.2897 1160.7076

3
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.3096 1140.0563

4

CUS MovedTray
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.3847 1211.0414

5

CUS MovedTray
CUS RemovedMoney
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.4246 1260.2536

6

CUS MovedTray
CUS RemovedMoney
EMP MovedTray
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.4859 1353.1436

7

CUS AddedMoney
CUS MovedTray
CUS RemovedMoney
EMP MovedTray
EMP RemovedMoney
EMP ReturnedScanner
EMP TookScanner 0.5335 1523.8244

8

CUS MovedTray
EMP HandReturns
EMP Interaction
EMP MovedTray
EMP RemovedMoney
EMP ReturnedScanner
EMP TookReceipt
EMP TookScanner 0.6228 1784.4875

6 Conclusion

We have introduced a new method for acquiring the basic
structure of an activity from a noisy symbol string produced
by video. Our method placed presuppositions on each com-
bination of terminal symbols and tested that presupposition
using an MDL criterion. The MDL equation measured the
balance between a compact grammar and a detailed descrip-
tion of the encoded data, and provided a means of quanti-
fying the quality of each presupposition. Results showed
that the formulation of the description lengths created an in-
herent bias toward smaller grammars and causes unintuitive
results. Based on insights from initial results, we proposed
a way of balancing the MDL equation using the data mul-
tiplier α which minimized the bias toward smaller gram-
mars. This new balanced equation resulted in the discovery
of a detailed description of the data likelihood and a com-
pact grammar that captured the basic structure of activities
found in the training data.

While creating a symbol string from video has allowed
us to use pre-existing syntactic analysis techniques, we have
yet to utilize the full range of the information contained in
video. For example, a more intuitive grammar could be at-
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Figure 5. Parse tree of a common structure
found in the training data.

tained by analyzing temporal information between two ac-
tions (e.g. one action always occurs 30 seconds after an-
other) or by comparing the relative location (e.g. two ac-
tions occur in the same location) or by observing that two
actions are always connected to a common object. Future
work will use temporal, spatial and contextual information
in the grammar learning process.

Furthermore, when we consider the applications of hu-
man activity learning techniques, we will in most cases,
have some general a priori information about the activities
to be learned. For example in our experiments, we already
know that an employee-customer interaction will begin with
the placement of an item on the counter and end with a pay-
ment for the item. In future works, we will used this type
of rough a priori grammar to guide our learning process, to
discover more subtle and complex grammars found in hu-
man activities.
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